ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:513.50KB ,
资源ID:1189007      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1189007-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(江西省信丰中学2020届高三数学上学期第九次周考(理A层)(13班).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

江西省信丰中学2020届高三数学上学期第九次周考(理A层)(13班).doc

1、江西省信丰中学2020届高三数学上学期第九次周考(理A层)(13班)一。选择题(50分)1如图,ABCDA1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是()AA,M,O三点共线 BA,M,O,A1不共面CA,M,C,O不共面 DB,B1,O,M共面2下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB平面MNP的图形的序号是()A BC D3已知直线a,b异面,给出以下命题:一定存在平行于a的平面使b;一定存在平行于a的平面使b;一定存在平行于a的平面使b;一定存在无数个平行于a的平面与b交于一定点则其中论

2、断正确的是()A BC D4.正方体ABCD-A1B1C1D1的棱长为2,O是底面ABCD的中心,E,F分别是CC1,AD的中点,则异面直线OE与FD1所成角的余弦值为( )A. B. C.D.5如图所示,在正方体中,点是棱上的一个动点,平面交棱于点则下列命题中假命题是 ( )(A)存在点,使得/平面(B)存在点,使得平面(C)对于任意的点,平面平面(D)对于任意的点,四棱锥的体积均不变6. 已知函数.那么对于任意的,函数的最大值与最小值分别为( )A. B. C. D. 7.已知三棱柱ABCA1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为ABC的中心,则AB1与底面ABC所成角

3、的正弦值等于 ()A. B. C. D.8.如右图所示,正三棱锥中,分别是VC,VA,AC的中点,为上任意一点,则直线与F所成的角的大小是( )A. B. C. D.随点的变化而变化9. 高为的四棱锥的底面是边长为1的正方形,点、A、 B、C、D均在半径为1的同一球面上,则底面ABCD的中心与顶点S之间的距离为( ) A B. C D. 10已知二面角的平面角是锐角,内一点到的距离为3,点到棱的距离为4,那么的值等于 ( ) A B C D二填空题(20分)11如图,三棱锥VABC的底面为正三角形,侧面VAC与底面垂直且VAVC,已知其主视图的面积为,则其左视图的面积为_12.已知三棱锥的所有

4、顶点都在球的球面上,是球的直径若平面 平面,三棱锥的体积为9,则球的表面积为_13如图,四棱锥O-ABCD中,AC垂直平分BD,|=2,|=1,则()()的值是 .14如图所示,正方体ABCDABCD的棱长为1,E,F分别是棱AA,CC的中点,过直线EF的平面分别与棱BB、DD分别交于M,N两点,设BM=x,x0,1,给出以下四个结论:平面MENF平面BDDB;直线AC平面MENF始终成立;四边形MENF周长L=f(x),x0,1是单调函数;四棱锥CMENF的体积V=h(x)为常数;以上结论正确的是 三解答题(48分)15如图所示,三棱柱ABC A1B1C1,底面是边长为2的正三角形,侧棱A1

5、A底面ABC,点E,F分别是棱CC1,BB1上的点,点M是线段AC上的动点,EC2FB2.(1)当点M在何位置时,BM平面AEF?(2)若BM平面AEF,判断BM与EF的位置关系,说明理由;并求BM与EF所成的角的余弦值16(12分)如图,四棱锥PABCD的底面是边长为1的正方形,PD底面ABCD,PD=AD,E为PC的中点,F为PB上一点,且EFPB(1)证明:PA平面EDB;(2)证明:PB平面EFD;(3)求三棱锥BADF的体积17如图所示的几何体ABCDFE中,ABC,DFE都是等边三角形,且所在平面平行,四边形BCED是边长为2的正方形,且所在平面垂直于平面ABC.(1)求几何体AB

6、CDFE的体积;(2)证明:平面ADE平面BCF.18. 在三棱柱ABCA1B1C1中,侧面ABB1A1为矩形,AB=2,AA1=2,D是AA1的中点,BD与AB1交于点O,且COABB1A1平面(1)证明:BCAB1;(2)若OC=OA,求直线CD与平面ABC所成角的正弦值2019年高三(13)班第九次周考卷参考答案一选择题题号12345678910答案ACDBBAACDD二填空题11 12 13 3 14 三解答题15解:(1)法一:如图(1)所示,取AE的中点O,连接OF,过点O作OMAC于点M.因为侧棱A1A底面ABC,所以侧面A1ACC1底面ABC.又因为EC2FB2,所以OMFBE

7、C且OMECFB,所以四边形OMBF为矩形,BMOF.因为OF平面AEF,BM平面AEF,故BM平面AEF,此时点M为AC的中点法二:如图(2)所示,取EC的中点P,AC的中点Q,连接PQ,PB,BQ.因为EC2FB2,所以PE綊BF,所以PQAE,PBEF,所以PQ平面AFE,PB平面AEF,因为PBPQP,PB,PQ 平面PBQ,所以平面PBQ平面AEF.又因为BQ平面PBQ,所以BQ平面AEF.故点Q即为所求的点M,此时点M为AC的中点(2)由(1)知,BM与EF异面,OFE(或MBP)就是异面直线BM与EF所成的角或其补角易求AFEF,MBOF,OFAE,所以cosOFE,所以BM与E

8、F所成的角的余弦值为.16明:(1)连接AC交BD于点G,连接EG(1分)因为四边形ABCD是正方形,所以点G是AC的中点,又因为E为PC的中点,因此EGPA(2分)而EG平面EDB,所以PA平面EDB(4分)(2)证明:PD底面ABCD且DC底面ABCD,PDDCPD=DC,可知PDC是等腰直角三角形,而DE是斜边PC的中线,DEPC同样由PD底面ABCD,得PDBC底面ABCD是正方形,有DCBC,BC平面PDC而DE平面PDC,BCDE由和推得DE平面PBC 而PB平面PBC,DEPB又EFPB且DEEF=E,所以PB平面EFD(9分)(3)解:过点F作FHPD,交BD于H因为PD底面A

9、BCD,FHPD,所以FH底面ABCD 由题意,可得, 由RtPFERtPCF,得,由RtBFHRtBPD,得,所以,(10分)所以,即三棱锥BADF的体积为(12分)17解:(1)取BC的中点O,ED的中点G,连接AO,OF,FG,AG.AOBC,AO平面ABC,平面BCED平面ABC,AO平面BCED.同理FG平面BCED.AOFG,VABCDFE42.(2)证明:由(1)知AOFG,AOFG,四边形AOFG为平行四边形,AGOF.又DEBC,DEAGG,DE平面ADE,AG平面ADE,FOBCO,FO平面BCF,BC平面BCF,平面ADE平面BCF.18(I)证明:由题意,因为ABB1A

10、1是矩形,D为AA1中点,AB=2,AA1=2,AD=,所以在直角三角形ABB1中,tanAB1B=,在直角三角形ABD中,tanABD=,所以AB1B=ABD,又BAB1+AB1B=90,BAB1+ABD=90,所以在直角三角形ABO中,故BOA=90,即BDAB1,又因为CO侧面ABB1A1,AB1侧面ABB1A1,所以COAB1所以,AB1面BCD,因为BC面BCD,所以BCAB1()解:如图,分别以OD,OB1,OC所在的直线为x,y,z轴,以O为原点,建立空间直角坐标系,则A(0,0),B(,0,0),C(0,0,),B1(0,0),D(,0,0),又因为=2,所以所以=(,0),=(0,),=(,),=(,0,),设平面ABC的法向量为=(x,y,z),则根据可得=(1,)是平面ABC的一个法向量,设直线CD与平面ABC所成角为,则sin=,所以直线CD与平面ABC所成角的正弦值为

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3