ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:226KB ,
资源ID:118316      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-118316-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020-2021学年人教A版数学选修2-2学案:2-2-2 反证法 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2020-2021学年人教A版数学选修2-2学案:2-2-2 反证法 WORD版含解析.doc

1、2.2.2反证法内容标准学科素养1.了解反证法是间接证明的一种基本方法;2.理解反证法的思考过程,会用反证法证明数学问题.加强数学运算严格逻辑推理提高直观想象授课提示:对应学生用书第41页基础认识知识点反证法王戎小时候,爱和小朋友在路上玩耍一天,他们发现路边的一棵树上结满了李子,小朋友一哄而上,去摘李子,独有王戎没动,等到小朋友们摘了李子一尝,原来是苦的!他们都问王戎:“你怎么知道李子是苦的呢?”王戎说:“假如李子不苦的话,早被路人摘光了,而这树上却结满了李子,所以李子一定是苦的”本故事中王戎运用了什么论证思想?提示:运用了反证法思想知识梳理(1)定义:假设原命题不成立,经过正确的推理,最后得

2、出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法(2)反证法常见的矛盾类型反证法的关键是在正确的推理下得出矛盾这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾等思考:1.反证法的思维过程是怎样的?提示:否定结论推演过程中引出矛盾否定假设肯定结论,即否定推理否定(经过正确的推理导致逻辑矛盾,从而达到新的否定,即肯定原命题)反证法的证明过程可以用以下框图表示:2反证法的证明步骤是怎样的?提示:用反证法证明命题时,要从否定结论开始,经过正确的推理导致逻辑矛盾,从而达到新的否定(即肯定原命题)这个过程包括下面三个步骤:(1)反设假设命题的结论不成立,即

3、假设原结论的反面为真;(2)归谬由“反设”作为条件,经过一系列正确的推理,得出矛盾;(3)存真由矛盾结果断定反设错误,从而肯定原结论成立即反证法的证明过程可以概括为:反设归谬存真自我检测1证明“在ABC中至多有一个直角或钝角”,第一步应假设()A三角形中至少有一个直角或钝角B三角形中至少有两个直角或钝角C三角形中没有直角或钝角D三角形中三个角都是直角或钝角解析:“至多有一个”的否定是“至少有两个”答案:B2已知a,b是异面直线,直线c平行于直线a,那么直线c与b的位置关系为()A一定是异面直线 B一定是相交直线C不可能是平行直线 D不可能是相交直线解析:假设cb,而由ca,可得ab,这与a,b

4、是异面直线矛盾,故c与b不可能是平行直线答案:C3用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:ABC9090C180,这与三角形内角和为180相矛盾,AB90不成立所以一个三角形中不能有两个直角假设A,B,C中有两个角是直角,不妨设AB90.正确顺序的排列为_解析:反证法的步骤是:先假设命题不成立,然后通过推理得出矛盾,最后否定假设,得到命题是正确的答案:授课提示:对应学生用书第42页探究一用反证法证明否定性命题例1已知a,b,c,dR,且adbc1,求证:a2b2c2d2abcd1.证明假设a2b2c2d2abcd1.因为adbc1,所以a2b2c2d2abcd

5、bcad0,即(ab)2(cd)2(ad)2(bc)20,所以ab0,cd0,ad0,bc0,则abcd0,这与已知条件adbc1矛盾故假设不成立,所以a2b2c2d2abcd1.方法技巧(1)用反证法证明否定性命题的适用类型:结论中含有“不”“不是”“不可能”“不存在”等词语的命题称为否定性命题,此类问题的正面比较模糊,而反面比较具体,适合使用反证法(2)用反证法证明数学命题的步骤跟踪探究1.已知三个正数a,b,c成等比数列但不成等差数列,求证:,不成等差数列证明:假设,成等差数列,则2,4bac2.a,b,c成等比数列,b2ac,由得b,代入式,得ac2()20,ac,从而abc,这与已知

6、a,b,c不成等差数列相矛盾,假设不成立故,不成等差数列探究二用反证法证明“至多、至少”问题例2已知a,b,c(0,2),求证:(2a)b,(2b)c,(2c)a不能都大于1.证明假设(2a)b,(2b)c,(2c)a都大于1.因为a,b,c(0,2),所以2a0,2b0,2c0.所以1.同理1,1.三式相加,得3,即33,矛盾所以(2a)b,(2b)c,(2c)a不能都大于1.延伸探究已知a,b,c(0,1),求证:(1a)b,(1b)c,(1c)a不能都大于.证明:假设(1a)b,(1b)c,(1c)a都大于.a,b,c都是小于1的正数,1a,1b,1c都是正数.同理,.三式相加,得,即,

7、显然不成立(1a)b,(1b)c,(1c)a不能都大于.方法技巧应用反证法常见的“结论词”与“反设词”当命题中出现“至多”“至少”等词语时,直接证明不易入手且讨论较复杂这时,可用反证法证明,证明时常见的“结论词”与“反设词”如:结论词反设词结论词反设词至少有一个一个也没有对所有x成立存在某个x0不成立至多有一个至少有两个对任意x不成立存在某个x0成立至少有n个至多有n1个p或q綈p且綈q至多有n个至少有n1个p且q綈p或綈q跟踪探究2.用反证法证明:如果函数f(x)在区间a,b上是增函数,那么方程f(x)0在区间a,b上至多有一个实数根(不考虑重根)证明:假设方程f(x)0在区间a,b上至少有

8、两个实数根,设,为它的两个实数根,则f()f()0.因为,不妨设,又函数f(x)在a,b上是增函数,所以f()f(),这与f()f()0矛盾,所以方程f(x)0在区间a,b上至多有一个实数根探究三用反证法证明唯一性命题例3用反证法证明:过已知直线a外一点A有且只有一条直线b与已知直线a平行证明由两条直线平行的定义可知,过点A至少有一条直线与直线a平行假设过点A还有一条直线b与已知直线a平行,即bbA,ba.又ba,由平行公理知bb.这与假设bbA矛盾,所以假设错误,原命题成立方法技巧“唯一性”问题是数学中的常见问题,常见的词语有“唯一”“有且只有一个”“仅有一个”等这类问题通常既要证明“存在性

9、”,又要证明“唯一性”证明“存在性”一般比较简单,多数采用直接证明的方法,但“唯一性”的证明需要用反证法,通常可假设“存在两个”或“至少有两个”等,再经过推理论证,得出矛盾.授课提示:对应学生用书第43页课后小结用反证法证题要把握三点(1)必须先否定结论,对于结论的反面出现的多种可能,要逐一论证,缺少任何一种可能,证明都是不全面的;(2)反证法必须从否定结论进行推理,且必须根据这一条件进行论证,否则,仅否定结论,不从结论的反面出发进行论证,就不是反证法;(3)反证法的关键是在正确的推理下得出矛盾,这个矛盾可以与已知矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾,但推导出的矛盾必须是明显的素养培优反设错误或不全面致误易错案例:已知x,yR,且x2y20.求证:x,y全为零易错分析:在利用反证法证明时,关键是熟练掌握常用词语的否定,如“全是”的否定是“不全是”对于结论的反面出现的多种可能,要逐一论证,缺少任何一种可能,证明都是不完全的考查直观想象、逻辑推理等核心素养自我纠正:证明:假设x,y不全为零,则有以下三种可能:(1)x0,y0,则x2y20,与x2y0矛盾;(2)x0,y0,则x2y20,与x2y0矛盾;(3)x0,y0,则x2y20,与x2y20矛盾故假设不成立,则x,y全为零.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3