收藏 分享(赏)

2020版高考数学北师大版(理)一轮复习单元质检卷十一 计数原理 WORD版含解析.doc

上传人:高**** 文档编号:1180808 上传时间:2024-06-05 格式:DOC 页数:4 大小:291.50KB
下载 相关 举报
2020版高考数学北师大版(理)一轮复习单元质检卷十一 计数原理 WORD版含解析.doc_第1页
第1页 / 共4页
2020版高考数学北师大版(理)一轮复习单元质检卷十一 计数原理 WORD版含解析.doc_第2页
第2页 / 共4页
2020版高考数学北师大版(理)一轮复习单元质检卷十一 计数原理 WORD版含解析.doc_第3页
第3页 / 共4页
2020版高考数学北师大版(理)一轮复习单元质检卷十一 计数原理 WORD版含解析.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、单元质检卷十一计数原理(时间:45分钟满分:100分)一、选择题(本大题共12小题,每小题6分,共72分)1. 从6个盒子中选出3个来装东西,则甲、乙两个盒子至少有一个被选中的情况有() A.16种B.18种C.22种D.37种2.(2018陕西延安6月模拟)展开式中含x2的项的系数为()A.120B.80C.20D.453. (2018辽宁沈阳质量监测一)若4个人按原来站的位置重新站成一排,恰有一个人站在自己原来的位置,则共有()种不同的站法.A.4B.8C.12D.244.在(x2+x+1)(x-1)6的展开式中,x4的系数是()A.-10B.-5C.5D.105.小明试图将一箱中的24瓶

2、啤酒全部取出,每次小明在取出啤酒时只能取出3瓶或4瓶,则小明取出啤酒的方式共有()A.18种B.27种C. 37种D.212种6. (2018江西南昌模拟)某校毕业典礼由6个节目组成,为考虑整体效果,对节目演出顺序有如下要求:节目甲必须排在前三位,且节目丙、丁必须排在一起,则该校毕业典礼节目演出顺序的编排方案共有()A.120种B.156种C.188种D.240种7.(1+2)3(1-)5的展开式中x的系数是()A.-4B.-2C.2D.48.(2018湖北宜昌考前训练) 若(5x+4)3=a0+a1x+a2x2+a3x3,则(a0+a2)-(a1+a3)=()A.-1B.1C.2D.-29.

3、(2018云南昆明模拟)从一颗骰子的六个面中任意选取三个面,其中只有两个面相邻的不同的选法共有( )A.20种B.16种C.12种D.8种10. (2018山东潍坊三模)若n=2xdx+1,则二项式的展开式中的常数项为()A.B.-C.D.-11.如果小明在某一周的第一天和第七天分别吃了3个水果,且从这周的第二天开始,每天所吃水果的个数与前一天相比,仅存在三种可能:或“多一个”或“持平”或“少一个”,那么小明在这一周中每天所吃水果个数的不同选择方案共有()A.50种B.51种C.140种D.141种12.(2018江西南昌二轮检测)甲、乙、丙、丁、戊五位妈妈相约各带一个小孩去观看花卉展,她们选

4、择骑共享电动车出行,每辆电动车只能载两人,其中孩子们表示都不坐自己妈妈的车,甲的小孩一定要坐戊妈妈的车,则他们坐车不同的搭配方式有()A.12种B.11种C.10种D.9种二、填空题(本大题共4小题,每小题7分,共28分)13.(2018广东东莞考前冲刺)x+(2x-1)5的展开式的常数项为. (用数字作答)14.有4名优秀学生A,B,C,D全部被保送到北京大学、清华大学、复旦大学,每所学校至少去一名,则不同的保送方案共有种.15.(2018广东汕头5月冲刺)已知x+(2x-1)5展开式中的常数项为30,则实数a=.16.某电视台曾在某时间段连续播放5个不同的商业广告,现在要在该时间段只保留其

5、中的2个商业广告,新增播1个商业广告与2个不同的公益宣传广告,且要求2个公益宣传广告既不能连续播放也不能在首尾播放,则不同的播放顺序共有种.参考答案单元质检卷十一计数原理1.A从6个盒子中选出3个来装东西,有种选法,甲、乙都未被选中的情况有种,所以甲、乙两个盒子至少有一个被选中的情况有-=20-4=16种,故选A.2.A原式可化为:,其展开式中可出现x2项的只有23与21两项,所以其展开式中x2项分别为x223=80x2,x321=40x2,则含x2项的系数为120x2.故选A.3.B由不对号入座的结论可知,另三个人排队不对号入座的方法共有2种,据此结合分步乘法计数原理可知,满足题意的站法共有

6、: 24=8种.故选B项.4.Dx2x2(-1)4+xx3(-1)3+x4(-1)2=10x4,所以x4的系数为10,故选D.5.C由题意知,取出啤酒的方式有三类,第一类:取6次,每次取出4瓶,只有1种方式;第二类:取8次,每次取出3瓶,只有1种方式;第三类:取7次,3次都取4瓶和4次都取3瓶,取法为=35(种),共计37种取法,故选C.6.A根据题意,由于节目甲必须排在前三位,分3种情况讨论:甲排在第一位,节目丙、丁必须排在一起,则乙丙相邻的位置有4个,考虑两者的顺序,有2种情况,将剩下的3个节目全排列,安排在其他三个位置,有=6种安排方法,则此时有426=48种编排方法;甲排在第二位,节目

7、丙、丁必须排在一起,则乙丙相邻的位置有3个,考虑两者的顺序,有2种情况,将剩下的3个节目全排列,安排在其他三个位置,有=6种安排方法,则此时有326=36种编排方法;甲排在第三位,节目丙、丁必须排在一起,则乙丙相邻的位置有3个,考虑两者的顺序,有2种情况,将剩下的3个节目全排列,安排在其他三个位置,有=6种安排方法,则此时有326=36种编排方法.则符合题意要求的编排方法有36+36+48=120种.故选A.7.C(1+2)3的展开式中常数项是1,含x的项是(2)2=12x;1-5的展开式中常数项是1,含x的项是(-)3=-10x,故(1+2)3(1-)5的展开式中含x项的系数为1(-10)+

8、112=2.8.A(5x+4)3=a0+a1x+a2x2+a3x3,令x=-1,则(-1)3=a0-a1+a2-a3,(a0+a2)-(a1+a3)=-1,故选A.9.C从一颗骰子的六个面中任意选取三个面有=20种情况,其中有三个面彼此相邻的有8种情况,所以只有两个面相邻的不同的选法共有20-8=12种.故选C.10.A由题意n=2xdx+1=2x2+1=10,即二项式为,则展开式的通项为Tr+1=,当r=8时,得到常数项为=,故选A.11.D因为第一天和第七天吃的水果数相同,所以6次变化中“多一个”或“少一个”的天数必须相同,且“多一个”或“少一个”的天数可能是0,1,2,3,共4种情况,所

9、以共有+=141(种),故选D.12.B解法一:不对号入座的递推公式为:a1=0,a2=1,an=(n-1)(an-1+an-2)(n3),据此可得:a3=2,a4=9,a5=44,即五个人不对号入座的方法为44种,由排列组合的对称性可知:若甲的小孩一定要坐戊妈妈的车,则坐车不同的搭配方式有=11种.故选B.解法二:设五位妈妈分别为ABCDE,五个小孩分别为abcde,对五个小孩进行排列后坐五位妈妈的车,由于甲的小孩一定要坐戊妈妈的车,故排列的第五个位置一定是a,对其余的四个小孩进行排列:bcde,bced,bdce,bdec,becd,bedc;cbde,cbed,cdbe,cdeb,ceb

10、d,cedb;dbce,dbec,dcbe,dceb,debc,decb;ebcd,ebdc,ecbd,ecdb,edbc,edcb.共有24种排列方法,其中满足题意的排列方法为:bcde,bdec,bedc,cdbe,cdeb,cedb,dcbe,dceb,debc,ecdb,edbc,共有11种.故选B.13.30因为(2x-1)5的展开式中含x项的系数为21(-1)4=10 ,所以x+(2x-1)5的展开式的常数项为310=30.14.36从4名优秀学生中选出2名组成复合元素,共有种选法,再把3个元素(包含一个复合元素)保送到甲、乙、丙3所学校,有种方法.根据分步乘法计数原理知,不同的保送方案共有=36(种).15.3(2x-1)5= (2x)5+(2x)(-1)4+(-1)5,展开式中的常数项为2x=30,解得a=3,故答案为3.16.120由题意知,要在该时间段只保留其中的2个商业广告,有=20种情况,增播1个商业广告,利用插空法有3种情况,再在2个空中插入2个不同的公益宣传广告,共有2种情况.根据分步乘法计数原理知,共有2032=120种播放顺序.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3