ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:261KB ,
资源ID:1180526      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1180526-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020版高考数学二轮复习分层设计(全国I卷)练习:第二层 专题五 专题过关检测——第2讲 圆锥曲线的定义、方程与性质 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2020版高考数学二轮复习分层设计(全国I卷)练习:第二层 专题五 专题过关检测——第2讲 圆锥曲线的定义、方程与性质 WORD版含解析.doc

1、专题过关检测A组“633”考点落实练一、选择题1(2019济南模拟)已知双曲线1的一个焦点F的坐标为(5,0),则该双曲线的渐近线方程为()AyxB.yxCyxD.yx解析:选A易知c5,故m16,故双曲线方程为1,将1换为0得0,即渐近线方程为yx.故选A.2已知抛物线x24y上一动点P到x轴的距离为d1,到直线l:xy40的距离为d2,则d1d2的最小值是()A.2 B.1C.2D.1解析:选D抛物线x24y的焦点F(0,1),由抛物线的定义可得d1|PF|1,则d1d2|PF|d21,而|PF|d2的最小值等于焦点F到直线l的距离,即(|PF|d2)min,所以d1d2的最小值是1.故选

2、D.3(2019全国卷)双曲线C:1的右焦点为F,点P在C的一条渐近线上,O为坐标原点,若|PO|PF|,则PFO的面积为()A. B.C.2D.3解析:选A不妨设点P在第一象限,根据题意可知c26,所以|OF|.又tanPOF,所以等腰三角形POF的高h,所以SPFO.故选A.4(2019全国卷)设F为双曲线C:1(a0,b0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2y2a2交于P,Q两点若|PQ|OF|,则C的离心率为()A. B.C2D.解析:选A设双曲线C:1(a0,b0)的右焦点F的坐标为(c,0)由圆的对称性及条件|PQ|OF|可知,PQ是以OF为直径的圆的直径,且PQOF

3、.设垂足为M,连接OP,如图,则|OP|a,|OM|MP|.由|OM|2|MP|2|OP|2得a2,故,即e.故选A.5(2019昆明模拟)已知F1,F2为椭圆C:1(ab0)的左、右焦点,B为C的短轴的一个端点,直线BF1与C的另一个交点为A,若BAF2为等腰三角形,则()A. B.C.D.3解析:选A如图,不妨设点B在y轴的正半轴上,根据椭圆的定义,得|BF1|BF2|2a,|AF1|AF2|2a,由题意知|AB|AF2|,所以|BF1|BF2|a,|AF1|,|AF2|.所以.故选A.6(2019广州调研)已知椭圆:1(ab0)的长轴长是短轴长的2倍,过右焦点F且斜率为k(k0)的直线与

4、相交于A,B两点若3,则k()A.1 B.2C.D.解析:选D设A(x1,y1),B(x2,y2),因为3,所以y13y2.因为椭圆的长轴长是短轴长的2倍,所以a2b,设bt,则a2t,故ct,所以1.设直线AB的方程为xsyt,代入上述椭圆方程,得(s24)y22styt20,所以y1y2,y1y2,即2y2,3y,得s2,k.故选D.二、填空题7已知P(1,)是双曲线C:1(a0,b0)渐近线上的点,则双曲线C的离心率是_解析:双曲线C的一条渐近线的方程为yx,P(1,)是双曲线C渐近线上的点,则,所以离心率e 2.答案:28若F1,F2是椭圆1的两个焦点,A为椭圆上一点,且AF1F245

5、,则AF1F2的面积为_解析:由题意得a3,b,c,|F1F2|2,|AF1|AF2|6.|AF2|2|AF1|2|F1F2|22|AF1|F1F2|cos 45|AF1|284|AF1|,(6|AF1|)2|AF1|284|AF1|,解得|AF1|.AF1F2的面积S2.答案:9(2019洛阳尖子生第二次联考)过抛物线C:y22px(p0)的焦点F的直线与抛物线C交于A,B两点,且3,抛物线C的准线l与x轴交于点E,AA1l于点A1,若四边形AA1EF的面积为6,则p_解析:不妨设点A在第一象限,如图,作BB1l于点B1,设直线AB与l的交点为D,由抛物线的定义及性质可知|AA1|AF|,|

6、BB1|BF|,|EF|p.设|BD|m,|BF|n,则,即,m2n.又,n,|DF|mn2p,ADA130.又|AA1|3n2p,|EF|p,|A1D|2p,|ED|p,|A1E|p,直角梯形AA1EF的面积为(2pp)p6,解得p2.答案:2三、解答题10(2019天津高考)设椭圆1(ab0)的左焦点为F,上顶点为B.已知椭圆的短轴长为4,离心率为.(1)求椭圆的方程;(2)设点P在椭圆上,且异于椭圆的上、下顶点,点M为直线PB与x轴的交点,点N在y轴的负半轴上,若|ON|OF|(O为原点),且OPMN,求直线PB的斜率解:(1)设椭圆的半焦距为c,依题意,2b4,又a2b2c2,可得a,

7、b2,c1.所以,椭圆的方程为1.(2)由题意,设P(xP,yP)(xP0),M(xM,0)设直线PB的斜率为k(k0),又B(0,2),则直线PB的方程为ykx2,与椭圆方程联立整理得(45k2)x220kx0,可得xP,代入ykx2得yP,进而直线OP的斜率为.在ykx2中,令y0,得xM.由题意得N(0,1),所以直线MN的斜率为.由OPMN,得1,化简得k2,从而k.所以,直线PB的斜率为或.11已知抛物线C:x22py(p0)上一点M(m,9)到其焦点F的距离为10.(1)求抛物线C的方程;(2)设过焦点F的直线l与抛物线C交于A,B两点,且抛物线在A,B两点处的切线分别交x轴于P,

8、Q两点,求|AP|BQ|的取值范围解:(1)已知M(m,9)到焦点F的距离为10,则点M到抛物线准线的距离为10.因为抛物线的准线方程为y,所以910,解得p2,所以抛物线的方程为x24y.(2)由已知可判定直线l的斜率存在,设斜率为k,因为F(0,1),所以l:ykx1.设A,B,由消去y得,x24kx40,则x1x24k,x1x24.由于抛物线C也是函数yx2的图象,且yx,则PA:yx1(xx1)令y0,解得xx1,所以P,从而|AP| .同理可得,|BQ| ,所以|AP|BQ| 2.因为k20,所以|AP|BQ|的取值范围为2,)12(2019江苏高考)如图,在平面直角坐标系xOy中,

9、椭圆C:1(ab0)的焦点为F1(1,0),F2(1,0)过F2作x轴的垂线l,在x轴的上方,l与圆F2:(x1)2y24a2交于点A,与椭圆C交于点D.连接AF1并延长交圆F2于点B,连接BF2交椭圆C于点E,连接DF1.已知DF1.(1)求椭圆C的标准方程;(2)求点E的坐标解:(1)设椭圆C的焦距为2c.因为F1(1,0),F2(1,0),所以F1F22,c1.又因为DF1,AF2x轴,所以DF2 .因此2aDF1DF24,从而a2.由b2a2c2,得b23.因此椭圆C的标准方程为1.(2)由(1)知,椭圆C:1,a2.因为AF2x轴,所以点A的横坐标为1.将x1代入圆F2的方程(x1)

10、2y216,解得y4.因为点A在x轴上方,所以A(1,4)又F1(1,0),所以直线AF1:y2x2.由得5x26x110,解得x1或x.将x代入y2x2,解得y.因此B.又F2(1,0),所以直线BF2:y(x1)由得7x26x130,解得x1或x.又因为E是线段BF2与椭圆的交点,所以x1.将x1代入y(x1),得y.因此E.由(1)知,椭圆C:1.如图,连接EF1.因为BF22a,EF1EF22a,所以EF1EB,从而BF1EB.因为F2AF2B,所以AB.所以ABF1E,从而EF1F2A.因为AF2x轴,所以EF1x轴因为F1(1,0),由得y.又因为E是线段BF2与椭圆的交点,所以y

11、.因此E.B组大题专攻强化练1已知抛物线C:x22py(p0),过焦点F的直线交C于A,B两点,D是抛物线的准线l与y轴的交点(1)若ABl,且ABD的面积为1,求抛物线的方程;(2)设M为AB的中点,过M作l的垂线,垂足为N.证明:直线AN与抛物线相切解:(1)ABl,|AB|2p.又|FD|p,SABDp21.p1,故抛物线C的方程为x22y.(2)证明:设直线AB的方程为ykx,由消去y得,x22kpxp20.x1x22kp,x1x2p2.其中A,B.M,N.kAN.又x22py,即y,y.抛物线x22py在点A处的切线斜率k.直线AN与抛物线相切2(2019武汉市调研测试)已知椭圆:1

12、(ab0)经过点M(2,1),且右焦点F(,0)(1)求椭圆的标准方程;(2)过N(1,0)且斜率存在的直线AB交椭圆于A,B两点,记t,若t的最大值和最小值分别为t1,t2,求t1t2的值解:(1)由椭圆1的右焦点为(,0),知a2b23,即b2a23,则1,a23.又椭圆过点M(2,1),1,又a23,a26.椭圆的标准方程为1.(2)设直线AB的方程为yk(x1),A(x1,y1),B(x2,y2),由得x22k2(x1)26,即(12k2)x24k2x2k260,点N(1,0)在椭圆内部,0,则t(x12)(x22)(y11)(y21)x1x22(x1x2)4(kx1k1)(kx2k1

13、)(1k2)x1x2(2k2k)(x1x2)k22k5, 将代入得,t(1k2)(2k2k)k22k5,t,(152t)k22k1t0,kR,则1224(152t)(1t)0,(2t15)(t1)10,即2t213t160,由题意知t1,t2是2t213t160的两根,t1t2.3.如图,椭圆C:1(ab0)的右焦点为F,右顶点、上顶点分别为点A,B,且|AB|BF|.(1)求椭圆C的离心率;(2)若点M在椭圆C的内部,过点M的直线l交椭圆C于P,Q两点,M为线段PQ的中点,且OPOQ,求直线l的方程及椭圆C的方程解:(1)由已知|AB|BF|,得 a,即4a24b25a2,4a24(a2c2

14、)5a2,所以e.(2)由(1)知a24b2,所以椭圆C的方程可化为1.设P(x1,y1),Q(x2,y2),由1,1,可得0,即0,即(y1y2)0,从而kPQ2,所以直线l的方程为y2,即2xy20.联立消去y,得17x232x164b20.则3221617(b24)0b,x1x2,x1x2.因为OPOQ, 0,即x1x2y1y20,x1x2(2x12)(2x22)0,5x1x24(x1x2)40,从而40,解得b1,所以椭圆C的方程为y21.综上,直线l的方程为2xy20,椭圆C的方程为y21.4(2019福建省质量检查)在平面直角坐标系xOy中,圆F:(x1)2y21外的点P在y轴的右

15、侧运动,且P到圆F上的点的最小距离等于它到y轴的距离记P的轨迹为E.(1)求E的方程;(2)过点F的直线交E于A,B两点,以AB为直径的圆D与平行于y轴的直线相切于点M,线段DM交E于点N,证明:AMB的面积是AMN的面积的四倍解:法一:(1)设P(x,y),依题意x0,F(1,0)因为P在圆F外,所以P到圆F上的点的最小距离为|PF|1.依题意得|PF|1x,即1x,化简得E的方程为y24x(x0)(2)证明:当直线AB的斜率不存在时,不符合题意,舍去当直线AB的斜率存在时,如图,在平面直角坐标系中,设N(x0,y0),A(x1,y1),B(x2,y2),则D.设直线AB的方程为yk(x1)

16、(k0),由得k2x2(2k24)xk20.因为(2k24)24k416k2160,所以x1x2,所以y1y2k(x11)k(x21),故D.由抛物线的定义知|AB|x1x22.设M(xM,yM),依题意得yM,所以|MD|xM.又|MD|,所以xM2,解得xM1,所以M.因为N在抛物线上,所以x0,即N,所以SAMB|MD|y1y2|y1y2|,SAMN|MN|y1yD|MN|y1y2|y1y2|.故SAMB4SAMN.法二:(1)设P(x,y),依题意x0.因为P在圆F外,所以P到圆F上的点的最小距离为|PF|1.依题意得,点P到F(1,0)的距离|PF|等于P到直线x1的距离所以P在以F

17、(1,0)为焦点,x1为准线的抛物线上,所以E的方程为y24x(x0)(2)证明:如图,在平面直角坐标系中,设A(x1,y1),B(x2,y2)因为直线AB过F(1,0),依题意可设其方程为xty1(t0)由得y24ty40.因为16t2160,所以y1y24t.所以x1x2ty11ty214t22.因为D是AB的中点,所以D(2t21,2t)由抛物线的定义得|AB|x11x214t24.设与圆D相切于M,且平行于y轴的直线为l:xm,因为DM与抛物线相交于N,所以m0,且DMl,又|DM|AB|,所以2t21m(4t24),解得m1.设N(x0,y0),则y02t,所以(2t)24x0,所以x0t2,因为t2,所以N为DM的中点,所以SAMD2SAMN.又D为AB的中点,所以SAMB2SAMD,所以SAMB4SAMN.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3