ImageVerifierCode 换一换
格式:PPT , 页数:33 ,大小:1.16MB ,
资源ID:1175997      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1175997-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2016江苏专用理科高考数学二轮专题复习课件 专题一第2讲 函数与导数、不等式.ppt)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2016江苏专用理科高考数学二轮专题复习课件 专题一第2讲 函数与导数、不等式.ppt

1、真题感悟考点整合热点聚焦题型突破归纳总结思维升华第2讲 不等式问题真题感悟考点整合热点聚焦题型突破归纳总结思维升华高考定位高考对本内容的考查主要有:(1)一元二次不等式是C级要求,要求在初中所学二次函数的基础上,掌握二次函数、二次不等式、二次方程之间的联系和区别,可以单独考查,也可以与函数、方程等构成综合题;(2)线性规划的要求是A级,理解二元一次不等式对应的平面区域,能够求线性目标函数在给定区域上的最值,同时对一次分式型函数、二次型函数的最值也要有所了解;(3)基本不等式是C级要求,理解基本不等式在不等式证明、函数最值的求解方面的重要应用.真题感悟考点整合热点聚焦题型突破归纳总结思维升华真

2、题 感 悟1.(2015江苏卷)不等式2x2x4的解集为_.解 析2x2 x 4 22,x2 x 2,即 x2 x 2 0,解 得 1x2.答案 x|1x2真题感悟考点整合热点聚焦题型突破归纳总结思维升华2.(2014江苏卷)已知函数f(x)x2mx1,若对于任意xm,m1,都有f(x)0时,f(x)x24x,则不等式f(x)x的解集用区间表示为_.真题感悟考点整合热点聚焦题型突破归纳总结思维升华真题感悟考点整合热点聚焦题型突破归纳总结思维升华答案 e,7真题感悟考点整合热点聚焦题型突破归纳总结思维升华真题感悟考点整合热点聚焦题型突破归纳总结思维升华真题感悟考点整合热点聚焦题型突破归纳总结思维

3、升华真题感悟考点整合热点聚焦题型突破归纳总结思维升华热点一 一元二次不等式的解法及应用【例1】(1)(2012江苏卷)已知函数f(x)x2axb(a,bR)的值域为0,),若关于x的不等式f(x)c的解集为(m,m6),则实数c的值为_.真题感悟考点整合热点聚焦题型突破归纳总结思维升华真题感悟考点整合热点聚焦题型突破归纳总结思维升华真题感悟考点整合热点聚焦题型突破归纳总结思维升华真题感悟考点整合热点聚焦题型突破归纳总结思维升华探究提高解一元二次不等式一般要先判断二次项系数的正负也即考虑对应的二次函数图象的开口方向,再考虑方程根的个数也即求出其判别式的符号,有时还需要考虑其对称轴的位置,根据条件

4、列出方程组或结合对应的函数图象求解.真题感悟考点整合热点聚焦题型突破归纳总结思维升华答案x|xlg 2真题感悟考点整合热点聚焦题型突破归纳总结思维升华热点二 利用基本不等式求最值微题型1基本不等式的简单应用【例21】(2015武汉模拟)已知两个正数x,y满足x4y5xy,则xy取最小值时,x,y的值分别为_.真题感悟考点整合热点聚焦题型突破归纳总结思维升华真题感悟考点整合热点聚焦题型突破归纳总结思维升华答案 18真题感悟考点整合热点聚焦题型突破归纳总结思维升华真题感悟考点整合热点聚焦题型突破归纳总结思维升华(1)求y关于x的函数关系式并指出它的定义域;(2)试确定点A,B的位置,使OAB的面积

5、最小.真题感悟考点整合热点聚焦题型突破归纳总结思维升华真题感悟考点整合热点聚焦题型突破归纳总结思维升华探究提高在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.真题感悟考点整合热点聚焦题型突破归纳总结思维升华真题感悟考点整合热点聚焦题型突破归纳总结思维升华真题感悟考点整合热点聚焦题型突破归纳总结思维升华真题感悟考点整合热点聚焦题型突破归纳总结思维升华真题感悟考点整合热点聚焦题型突破归纳总结思维升华探究提高线性规划的实质是把代数问题几何化,即数

6、形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.真题感悟考点整合热点聚焦题型突破归纳总结思维升华真题感悟考点整合热点聚焦题型突破归纳总结思维升华真题感悟考点整合热点聚焦题型突破归纳总结思维升华答案(1)1(2)1真题感悟考点整合热点聚焦题型突破归纳总结思维升华1.应用不等式的性质时应注意的两点(1)两个不等式相加的前提是两个不等式同向;两个不等式相乘的前提是两个不等式同向,且不等式两边均大于0;不等式原则上不能相减或相除.(2)不等式的性质是

7、不等式变形的依据,但要注意区分不等式各性质的是否可逆性.2.多次使用基本不等式的注意事项当多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且要注意取等号的条件的一致性,否则就会出错,因此在利用基本不等式处理问题时,列出等号成立的条件不仅是解题的必要步骤,也是检验转换是否有误的一种方法.真题感悟考点整合热点聚焦题型突破归纳总结思维升华3.均值不等式除了在客观题考查外,在解答题的关键步骤中也往往起到“巧解”的作用,但往往需先变换形式才能应用.4.解决线性规划问题首先要找到可行域,再注意目标函数表示的几何意义,数形结合找到目标函数达到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决.5.解答不等式与导数、数列的综合问题时,不等式作为一种工具常起到关键的作用,往往涉及到不等式的证明方法(如比较法、分析法、综合法、放缩法、换元法等).在求解过程中,要以数学思想方法为思维依据,并结合导数、数列的相关知识解题,在复习中通过解此类问题,体会每道题中所蕴含的思想方法及规律,逐步提高自己的逻辑推理能力.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3