ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:257.50KB ,
资源ID:1175414      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1175414-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《苏教版》《步步高》2014届高三数学(理)大一轮复习学案:第2章学案5 函数的单调性与最值.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《苏教版》《步步高》2014届高三数学(理)大一轮复习学案:第2章学案5 函数的单调性与最值.doc

1、学案5函数的单调性与最值导学目标: 1.理解函数的单调性、最大值、最小值及其几何意义.2.会用定义判断函数的单调性,会求函数的单调区间及会用单调性求函数的最值自主梳理1单调性(1)定义:一般地,设函数yf(x)的定义域为A,如果对于区间I内的任意两个值x1,x2,当x1x2时,都有f(x1)f(x2),那么就说f(x)在区间I上是单调_(2)单调性的定义的等价形式:设x1,x2a,b,那么(x1x2)(f(x1)f(x2)00f(x)在a,b上是单调_;(x1x2)(f(x1)f(x2)00)在 (,),(,)上单调_;在(,0),(0,)上单调_;函数yx(a”、“b0),求f(x)的单调区

2、间,并说明f(x)在其单调区间上的单调性变式迁移1已知f(x)是定义在R上的增函数,对xR有f(x)0,且f(5)1,设F(x)f(x),讨论F(x)的单调性,并证明你的结论探究点二函数的单调性与最值例2已知函数f(x),x1,)(1)当a时,求函数f(x)的最小值;(2)若对任意x1,),f(x)0恒成立,试求实数a的取值范围变式迁移2已知函数f(x)x在(1,)上是增函数,求实数a的取值范围探究点三抽象函数的单调性例3已知函数f(x)对于任意x,yR,总有f(x)f(y)f(xy),且当x0时,f(x)1时,f(x)0.(1)求f(1)的值;(2)判断f(x)的单调性;(3)若f(3)1,

3、解不等式f(|x|)2.分类讨论及数形结合思想例(14分)求f(x)x22ax1在区间0,2上的最大值和最小值【答题模板】解f(x)(xa)21a2,对称轴为xa.2分(1)当a0时,由图可知,f(x)minf(0)1,f(x)maxf(2)34a.5分(2)当0a1时,由图可知,f(x)minf(a)1a2,f(x)maxf(2)34a.8分(3)当12时,由图可知,f(x)minf(2)34a,f(x)maxf(0)1.综上,(1)当a0时,f(x)min1,f(x)max34a;(2)当0a1时,f(x)min1a2,f(x)max34a;(3)当12时,f(x)min34a,f(x)m

4、ax1.14分【突破思维障碍】(1)二次函数的单调区间是由图象的对称轴确定的故只需确定对称轴与区间的关系由于对称轴是xa,而a的取值不定,从而导致了分类讨论(2)不是应该分a2三种情况讨论吗?为什么成了四种情况?这是由于抛物线的对称轴在区间0,2所对应的区域时,最小值是在顶点处取得,但最大值却有可能是f(0),也有可能是f(2)函数的单调性的判定与单调区间的确定常用方法有:(1)定义法;(2)导数法;(3)图象法;(4)单调性的运算性质总结如下:若函数f(x),g(x)在区间I上具有单调性,则在区间I上具有以下性质:(1)f(x)与f(x)C具有相同的单调性(2)f(x)与af(x),当a0时

5、,具有相同的单调性,当af(a),则实数a的取值范围为_3(2009宁夏,海南改编)用mina,b,c表示a,b,c三个数中的最小值设f(x)min2x,x2,10x(x0),则f(x)的最大值为_4若f(x)x22ax与g(x)在区间1,2上都是减函数,则a的取值范围为_5已知定义在R上的增函数f(x),满足f(x)f(x)0,x1,x2,x3R,且x1x20,x2x30,x3x10,则f(x1)f(x2)f(x3)的符号为_(填“正”、“负”、“不确定”)6(2011淮安调研)函数y(x3)|x|的递增区间是_7设f(x)是增函数,则下列结论一定正确的是_(填序号)yf(x)2是增函数;y

6、是减函数;yf(x)是减函数;y|f(x)|是增函数8(2011苏州质检)设0x1,则函数y的最小值是_二、解答题(共42分)9(14分)已知函数f(x)a.(1)求证:函数yf(x)在(0,)上是增函数;(2)若f(x)0成立(1)判断f(x)在1,1上的单调性,并证明;(2)解不等式:f(x)34a35c,55c课堂活动区例1解题导引对于给出具体解析式的函数,判断或证明其在某区间上的单调性问题,可以结合定义(基本步骤为:取点,作差或作商,变形,判断)来求解可导函数则可以利用导数求解有些函数可以转化为两个或多个基本初等函数,利用其单调性可以方便求解解在定义域内任取x1,x2,且使x10,yf

7、(x2)f(x1).ab0,ba0,(ba)(x2x1)0,又x(,b)(b,),只有当x1x2b,或bx1x2时,函数才单调当x1x2b,或bx1x2时,f(x2)f(x1)0,即y0.yf(x)在(,b)上是单调减函数,在(b,)上也是单调减函数变式迁移1解在R上任取x1、x2,设x1f(x1),F(x2)F(x1)f(x2)f(x1)f(x2)f(x1)1,f(x)是R上的增函数,且f(5)1,当x5时,0f(x)5时f(x)1;若x1x25,则0f(x1)f(x2)1,0f(x1)f(x2)1,10,F(x2)x15,则f(x2)f(x1)1,f(x1)f(x2)1,10,F(x2)F

8、(x1)综上,F(x)在(,5)上为减函数,在(5,)上为增函数例2解(1)当a时,f(x)x2,设x1,x21,)且x1x2,f(x1)f(x2)x1x2(x1x2)(1)x1x2,x1x20,又1x10,f(x1)f(x2)0,f(x1)0恒成立,等价于x22xa0恒成立设yx22xa,x1,),yx22xa(x1)2a1递增,当x1时,ymin3a,于是当且仅当ymin3a0时,函数f(x)恒成立,故a3.方法二f(x)x2,x1,),当a0时,函数f(x)的值恒为正,满足题意,当a0时,函数f(x)0恒成立,故a3.方法三在区间1,)上f(x)0恒成立等价于x22xa0恒成立即ax22

9、x恒成立又x1,),ax22x恒成立,a应大于函数ux22x,x1,)的最大值ax22x(x1)21.当x1时,u取得最大值3,a3.变式迁移2解设1x1x2.函数f(x)在(1,)上是增函数,f(x1)f(x2)x1(x2)(x1x2)(1)0.又x1x20,即ax1x2恒成立1x11,x1x2x2,则x1x20,f(x1)f(x2)f(x1)f(x2)f(x1x2)又x0时,f(x)0,f(x1x2)0,即f(x1)x2,则f(x1)f(x2)f(x1x2x2)f(x2)f(x1x2)f(x2)f(x2)f(x1x2)又x0时,f(x)0,f(x1x2)0,即f(x1)0,代入得f(1)f

10、(x1)f(x1)0,故f(1)0.(2)任取x1,x2(0,),且x1x2,则1,由于当x1时,f(x)0,f()0,即f(x1)f(x2)0,f(x1)0时,由f(|x|)2,得f(x)9;当x0时,由f(|x|)2,得f(x)9,故x9或xa,解得2a0时,它有两个减区间为(,1)和(1,),故只需区间1,2是f(x)和g(x)的减区间的子集即可,则a的取值范围是00,x2x30,x3x10,x1x2,x2x3,x3x1.又f(x1)f(x2)f(x2),f(x2)f(x3)f(x3),f(x3)f(x1)f(x1),f(x1)f(x2)f(x3)f(x2)f(x3)f(x1)f(x1)

11、f(x2)f(x3)0.60,解析y.画图象如图所示:可知递增区间为0,7解析举例:设f(x)x,易知均不正确84解析y,当0x1时,x(1x)(x)2.y4.9(1)证明当x(0,)时,f(x)a,设0x10,x2x10.f(x1)f(x2)(a)(a)0.(5分)f(x1)f(x2),即f(x)在(0,)上是增函数(6分)(2)解由题意a2x在(1,)上恒成立,设h(x)2x,则a0,x(1,),h(x)在(1,)上单调递增(12分)故ah(1),即a3.a的取值范围为(,3(14分)10解设f(x)的最小值为g(a),则只需g(a)0,由题意知,f(x)的对称轴为.(1)当4时,g(a)

12、f(2)73a0,得a.又a4,故此时的a不存在(4分)(2)当2,2,即4a4时,g(a)f()3a0得6a2.又4a4,故4a2.(8分)(3)当2,即a4时,g(a)f(2)7a0得a7.又a4,故7a4.(13分)综上得所求a的取值范围是7a2.(14分)11解(1)任取x1,x21,1,且x10,x1x20,f(x1)f(x2)0,即f(x1)f(x2)f(x)在1,1上单调递增(4分)(2)f(x)在1,1上单调递增,x1.(9分)(3)f(1)1,f(x)在1,1上单调递增在1,1上,f(x)1.(10分)问题转化为m22am11,即m22am0,对a1,1成立下面来求m的取值范围设g(a)2mam20.若m0,则g(a)00,自然对a1,1恒成立若m0,则g(a)为a的一次函数,若g(a)0,对a1,1恒成立,必须g(1)0,且g(1)0,m2,或m2.m的取值范围是m0或|m|2.(14分)高考资源网w w 高 考 资源 网

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3