ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:102.50KB ,
资源ID:117425      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-117425-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2018届北师大版高三数学一轮复习练习:第九章 平面解析几何 第7讲 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2018届北师大版高三数学一轮复习练习:第九章 平面解析几何 第7讲 WORD版含解析.doc

1、基础巩固题组(建议用时:40分钟)一、选择题1.(2017郑州模拟)设双曲线1(a0,b0)的虚轴长为2,焦距为2,则双曲线的渐近线方程为()A.yx B.yx C.yx D.y2x解析因为2b2,所以b1,因为2c2,所以c,所以a,所以双曲线的渐近线方程为yxx,故选B.答案B2.(2015广东卷)已知双曲线C:1的离心率e,且其右焦点为F2(5,0),则双曲线C的方程为()A.1 B.1C.1 D.1解析因为所求双曲线的右焦点为F2(5,0)且离心率为e,所以c5,a4,b2c2a29,所以所求双曲线方程为1,故选C.答案C3.(2017山西省四校联考)已知双曲线C:1(a0,b0),右

2、焦点F到渐近线的距离为2,点F到原点的距离为3,则双曲线C的离心率e为()A. B. C. D.解析右焦点F到渐近线的距离为2,F(c,0)到yx的距离为2,即2,又b0,c0,a2b2c2,b2,又点F到原点的距离为3,c3,a,离心率e.答案B4.已知F1,F2为双曲线C:x2y22的左、右焦点,点P在C上,|PF1|2|PF2|,则cos F1PF2()A. B. C. D.解析由x2y22,知ab,c2.由双曲线定义,|PF1|PF2|2a2,又|PF1|2|PF2|,|PF1|4,|PF2|2,在PF1F2中,|F1F2|2c4,由余弦定理,得cos F1PF2.答案C5.(2017

3、成都调研)过双曲线x21的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A,B两点,则|AB|()A. B.2 C.6 D.4解析由题意知,双曲线x21的渐近线方程为yx,将xc2代入得y2,即A,B两点的坐标分别为(2,2),(2,2),所以|AB|4.答案D二、填空题6.(2016江苏卷)在平面直角坐标系xOy中,双曲线1的焦距是_.解析由已知,得a27,b23,则c27310,故焦距为2c2.答案27.(2016北京卷)双曲线1(a0,b0)的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点,若正方形OABC的边长为2,则a_.解析取B为双曲线右焦点,如图所示.四

4、边形OABC为正方形且边长为2,c|OB|2,又AOB,tan1,即ab.又a2b2c28,a2.答案28.(2016山东卷)已知双曲线E:1(a0,b0).若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|3|BC|,则E的离心率是_.解析由已知得|AB|,|BC|2c,232c.又b2c2a2,整理得:2c23ac2a20,两边同除以a2得2320,即2e23e20,解得e2或e1(舍去).答案2三、解答题9.(2017安徽江南十校联考)已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且过点P(4,).(1)求双曲线的方程;(2)若点M(3,m)在双曲

5、线上,求证:0.(1)解e,可设双曲线的方程为x2y2(0).双曲线过点(4,),1610,即6.双曲线的方程为x2y26.(2)证明法一由(1)可知,ab,c2,F1(2,0),F2(2,0),kMF1,kMF2,kMF1kMF2.点M(3,m)在双曲线上,9m26,m23,故kMF1kMF21,MF1MF2.0.法二由(1)可知,ab,c2,F1(2,0),F2(2,0),(23,m),(23,m),(32)(32)m23m2,点M(3,0)在双曲线上,9m26,即m230,0.10.已知椭圆C1的方程为y21,双曲线C2的左、右焦点分别是C1的左、右顶点,而C2的左、右顶点分别是C1的左

6、、右焦点.(1)求双曲线C2的方程;(2)若直线l:ykx与双曲线C2恒有两个不同的交点A和B,且2(其中O为原点),求k的取值范围.解(1)设双曲线C2的方程为1(a0,b0),则a23,c24,再由a2b2c2,得b21.故C2的方程为y21.(2)将ykx代入y21,得(13k2)x26kx90.由直线l与双曲线C2交于不同的两点,得k2且k21.设A(x1,y1),B(x2,y2),则x1x2,x1x2.x1x2y1y2x1x2(kx1)(kx2)(k21)x1x2k(x1x2)2.又2,得x1x2y1y22,2,即0,解得k23.由得k21,故k的取值范围为.能力提升题组(建议用时:

7、20分钟)11.过双曲线C:1(a0,b0)的右顶点作x轴的垂线,与C的一条渐近线相交于点A.若以C的右焦点为圆心、半径为4的圆经过A,O两点(O为坐标原点),则双曲线C的方程为()A.1 B.1C.1 D.1解析由双曲线方程知右顶点为(a,0),不妨设其中一条渐近线方程为yx,因此可得点A的坐标为(a,b).设右焦点为F(c,0),由已知可知c4,且|AF|4,即(ca)2b216,所以有(ca)2b2c2,又c2a2b2,则c2a,即a2,所以b2c2a2422212.故双曲线的方程为1,故选A.答案A12.若双曲线1(a0,b0)上存在一点P满足以|OP|为边长的正方形的面积等于2ab(

8、其中O为坐标原点),则双曲线的离心率的取值范围是()A. B.C. D.解析由条件,得|OP|22ab,又P为双曲线上一点,从而|OP|a,2aba2,2ba,又c2a2b2a2a2,e.答案C13.(2016浙江卷)设双曲线x21的左、右焦点分别为F1,F2,若点P在双曲线上,且F1PF2为锐角三角形,则|PF1|PF2|的取值范围是_.解析如图,由已知可得a1,b,c2,从而|F1F2|4,由对称性不妨设点P在右支上,设|PF2|m,则|PF1|m2am2,由于PF1F2为锐角三角形,结合实际意义需满足解得1m3,又|PF1|PF2|2m2,22m28.答案(2,8)14.已知双曲线1(a0,b0)的一条渐近线方程为2xy0,且顶点到渐近线的距离为.(1)求此双曲线的方程;(2)设P为双曲线上一点,A,B两点在双曲线的渐近线上,且分别位于第一、二象限,若,求AOB的面积.解(1)依题意得解得故双曲线的方程为x21.(2)由(1)知双曲线的渐近线方程为y2x,设A(m,2m),B(n,2n),其中m0,n0,由得点P的坐标为.将点P的坐标代入x21,整理得mn1.设AOB2,tan2,则tan ,从而sin 2.又|OA|m,|OB|n,SAOB|OA|OB|sin 22mn2.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3