ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:90.50KB ,
资源ID:1173458      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1173458-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2015届高考数学(新课标) 题型全归纳 数列求和的若干常用方法.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2015届高考数学(新课标) 题型全归纳 数列求和的若干常用方法.doc

1、数列求和的若干常用方法数列求和是数列的重要内容之一,也是高考数学的重点考查对象。除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧.如某些特殊数列的求和可采用分部求和法转化为等差数列或等比数列的和或用裂项求和法、错位相减法、逆序相加法、组合化归法,递推法等。本文就此总结如下,供参考。一、分组求和法 所谓分组法求和就是:对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。例1数列an的前n项和,数列bn满 .()证明数列an为等比数列;()求数列bn的前n项和Tn。解析:()由,两式相减得:,同定义知是首

2、项为1,公比为2的等比数列. () 等式左、右两边分别相加得:= 已知等差数列的首项为1,前10项的和为145,求:解析:首先由 则:二、裂项求和法这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1) (2)(3)等。例3. 在数列an中,又,求数列bn的前n项的和.解析: 数列bn的前n项和 例4设an是正数组成的数列,其前n项和为Sn,并且对所有自然数n,an与2的等差中项等于Sn与2的等比中项. (1)写出数列an的前三项;(2)求数列an的通项公式(写出推证过程);(3)令

3、bn=(nN),求:b1+b2+bn-n.解析:(1)略;(2) an=4n-2.; (3)令cn=bn-1,则cn= =b1+b2+bn-n=c1+c2+cn=评析:一般地,若数列为等差数列,且公差不为0,首项也不为0,则求和:首先考虑则=。下列求和: 也可用裂项求和法。错位相减法设数列的等比数列,数列是等差数列,则数列的前项和求解,均可用错位相减法。例5.已知,数列是首项为a,公比也为a的等比数列,令, 求数列的前项和。解析:-得:。例6已知数列是等差数列,且()略;()令求数列前n项和的公式.解析:()略;()解:由得 将式减去式,得 所以四、组合化归法例7.求和:。解析:而连续自然数可表示为组合数的形式,于是,数列的求和便转化为组合数的求和问题了。评析:可转化为连续自然数乘积的数列求和问题,均可考虑组合化归法。逆序相加法例8.设数列是公差为,且首项为的等差数列,求和:解析:因为 评析:此类问题还可变换为探索题形:已知数列的前项和,是否存在等差数列使得对一切自然数n都成立。递推法例6. 已知数列的前项和与满足:成等比数列,且,求数列的前项和。解析:由题意: 评析:本题的常规方法是先求通项公式,然后求和,但逆向思维,直接求出数列的前项和的递推公式,是一种最佳解法。

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3