1、高考导航圆锥曲线是平面解析几何的核心部分,也是每年高考必考的一道解答题,常以求曲线的标准方程、位置关系、定点、定值、最值、范围、探索性问题为主这些试题的命制有一个共同的特点,就是起点低,但在第(2)问或第(3)问中一般都伴有较为复杂的运算,对考生解决问题的能力要求较高,通常作为压轴题的形式出现热点一圆锥曲线的标准方程与几何性质圆锥曲线的标准方程是高考的必考题型,圆锥曲线的几何性质是高考考查的重点,求离心率、准线、双曲线的渐近线是常考题型【例1】 (1)(2015天津卷)已知双曲线1(a0,b0)的一个焦点为F(2,0),且双曲线的渐近线与圆(x2)2y23相切,则双曲线的方程为()A.1 B.
2、1 C.y21 Dx21(2)若点M(2,1),点C是椭圆1的右焦点,点A是椭圆的动点,则|AM|AC|的最小值为_(3)已知椭圆1(ab0)与抛物线y22px(p0)有相同的焦点F,P,Q是椭圆与抛物线的交点,若直线PQ经过焦点F,则椭圆1(ab0)的离心率为_解析(1)双曲线1的一个焦点为F(2,0),则a2b24,双曲线的渐近线方程为yx,由题意得,联立解得b,a1,所求双曲线的方程为x21,选D.(2)设点B为椭圆的左焦点,点M(2,1)在椭圆内,那么|BM|AM|AC|AB|AC|2a,所以|AM|AC|2a|BM|,而a4,|BM|,所以(|AM|AC|)最小8.(3)因为抛物线y
3、22px(p0)的焦点F为,设椭圆另一焦点为E.如图所示,将x代入抛物线方程得yp,又因为PQ经过焦点F,所以P且PFOF.所以|PE|p,|PF|p,|EF|p.故2app,2cp,e1.答案(1)D(2)8(3)1探究提高(1)在椭圆和双曲线中,椭圆和双曲线的定义把曲线上的点到两个焦点的距离联系在一起,可以把曲线上的点到一个焦点的距离转化为到另一个焦点的距离,也可以结合三角形的知识,求出曲线上的点到两个焦点的距离在抛物线中,利用定义把曲线上的点到焦点的距离转化为其到相应准线的距离,再利用数形结合的思想去解决有关的最值问题(2)求解与圆锥曲线的几何性质有关的问题关键是建立圆锥曲线方程中各个系
4、数之间的关系,或者求出圆锥曲线方程中的各个系数,再根据圆锥曲线的几何性质通过代数方法进行计算得出结果【训练1】 (2017衡水金卷)已知椭圆1的左、右焦点分别为F1,F2,过F1且倾斜角为45的直线l交椭圆于A,B两点,以下结论:ABF2的周长为8;原点到l的距离为1;|AB|.其中正确结论的个数为()A3 B2 C1 D0解析由椭圆的定义,得|AF1|AF2|4,|BF1|BF2|4,又|AF1|BF1|AB|,所以ABF2的周长为|AB|AF2|BF2|8,故正确;由条件,得F1(,0),因为过F1且倾斜角为45的直线l的斜率为1,所以直线l的方程为yx,则原点到l的距离d1,故正确;设A
5、(x1,y1),B(x2,y2),由得3x24x0,解得x10,x2,所以|AB|x1x2|,故正确故选A.答案A热点二圆锥曲线中的定点、定值问题(规范解答)定点、定值问题一般涉及曲线过定点、与曲线上的动点有关的定值问题以及与圆锥曲线有关的弦长、面积、横(纵)坐标等的定值问题【例2】 (满分12分)(2015全国卷)已知椭圆C:1(ab0)的离心率为,点(2,)在C上(1)求C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M,证明:直线OM的斜率与直线l的斜率的乘积为定值满分解答(1)解由题意有,1,2分解得a28,b24.4分所以C的方程为1.5分(
6、2)证明设直线l:ykxb(k0,b0),A(x1,y1),B(x2,y2),M(xM,yM)将ykxb代入1得(2k21)x24kbx2b280.7分故xM,yMkxMb.10分于是直线OM的斜率kOM,即kOMk.所以直线OM的斜率与直线l的斜率的乘积为定值.12分列出方程组,解出a2,b2得4分设出直线l的方程后与椭圆方程联立消去y得到关于x的方程准确者得4分求出点M的坐标得1分,再得到直线OM的斜率与直线l的斜率的乘积为定值得2分结论得1分 解答圆锥曲线中的定点、定值问题的一般步骤第一步:研究特殊情形,从问题的特殊情形出发,得到目标关系所要探求的定点、定值第二步:探究一般情况探究一般情
7、形下的目标结论第三步:下结论,综合上面两种情况定结论【训练2】 已知抛物线C:y22px(p0)的焦点F(1,0),O为坐标原点,A,B是抛物线C上异于O的两点(1)求抛物线C的方程;(2)若直线OA,OB的斜率之积为,求证:直线AB过x轴上一定点(1)解因为抛物线y22px(p0)的焦点坐标为(1,0),所以1,所以p2.所以抛物线C的方程为y24x.(2)证明当直线AB的斜率不存在时,设A,B.因为直线OA,OB的斜率之积为,所以,化简得t232.所以A(8,t),B(8,t),此时直线AB的方程为x8.当直线AB的斜率存在时,设其方程为ykxb,A(xA,yA),B(xB,yB),联立得
8、化简得ky24y4b0.根据根与系数的关系得yAyB,因为直线OA,OB的斜率之积为,所以,即xAxB2yAyB0.即2yAyB0,解得yAyB0(舍去)或yAyB32.所以yAyB32,即b8k,所以ykx8k,即yk(x8)综上所述,直线AB过定点(8,0)热点三圆锥曲线中的最值、范围问题圆锥曲线中的最值问题大致可分为两类:一是涉及距离、面积的最值以及与之相关的一些问题;二是求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题【例3】 (2016山东卷)平面直角坐标系xOy中,椭圆C:1(ab0)的离心率是,抛物线E:x22y的焦点F是C的一个顶点(1)求椭圆C的方
9、程;(2)设P是E上的动点,且位于第一象限,E在点P处的切线l与C交于不同的两点A,B,线段AB的中点为D.直线OD与过P且垂直于x轴的直线交于点M.求证:点M在定直线上;直线l与y轴交于点G,记PFG的面积为S1,PDM的面积为S2,求的最大值及取得最大值时点P的坐标(1)解由题意知,可得a24b2,因为抛物线E的焦点F,所以b,a1,所以椭圆C的方程为x24y21.(2)证明设P(m0),由x22y,可得yx,所以直线l的斜率为m,因此直线l的方程为ym(xm)即ymx.设A(x1,y1),B(x2,y2),D(x0,y0)联立方程得(4m21)x24m3xm410.由0,得0m(或0m2
10、0)交于M,N两点,(1)当k0时,分别求C在点M和N处的切线方程;(2)y轴上是否存在点P,使得当k变动时,总有OPMOPN?说明理由解(1)由题设可得M(2,a),N(2,a),或M(2,a),N(2,a)又y,故y在x2处的导数值为,C在点(2,a)处的切线方程为ya(x2),即xya0.y在x2处的导数值为,C在点(2,a)处的切线方程为ya(x2),即xya0.故所求切线方程为xya0和xya0.(2)存在符合题意的点,证明如下:设P(0,b)为符合题意的点,M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为k1,k2.将ykxa代入C的方程得x24kx4a0.故x1x2
11、4k,x1x24a.从而k1k2.当ba时,有k1k20,则直线PM的倾斜角与直线PN的倾斜角互补,故OPMOPN,所以点P(0,a)符合题意2(2016北京卷)已知椭圆C:1过点A(2,0),B(0,1)两点(1)求椭圆C的方程及离心率;(2)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值(1)解由题意知a2,b1.所以椭圆方程为y21,又c.所以椭圆离心率e.(2)证明设P点坐标为(x0,y0)(x00,y00),则x4y4,由B点坐标(0,1)得直线PB方程为:y1(x0),令y0,得xN,从而|AN|2xN2,由A点坐
12、标(2,0)得直线PA方程为y0(x2),令x0,得yM,从而|BM|1yM1,所以S四边形ABNM|AN|BM|2.即四边形ABNM的面积为定值2.3已知中心在坐标原点,焦点在x轴上的椭圆过点P(2,),且它的离心率e.(1)求椭圆的标准方程;(2)与圆(x1)2y21相切的直线l:ykxt交椭圆于M,N两点,若椭圆上一点C满足,求实数的取值范围解(1)设椭圆的标准方程为1(ab0),由已知得:解得所以椭圆的标准方程为1.(2)因为直线l:ykxt与圆(x1)2y21相切,所以12k(t0),把ykxt代入1并整理得:(34k2)x28ktx(4t224)0,设M(x1,y1),N(x2,y
13、2),则有x1x2,y1y2kx1tkx2tk(x1x2)2t,因为(x1x2,y1y2),所以C,又因为点C在椭圆上,所以,12,因为t20,所以211,所以022,所以的取值范围为(,0)(0,)4(2017西安模拟)如图所示,在直角坐标系xOy中,点P到抛物线C:y22px(p0)的准线的距离为.点M(t,1)是C上的定点,A,B是C上的两动点,且线段AB的中点Q(m,n)在直线OM上(1)求曲线C的方程及t的值;(2)记d,求d的最大值解(1)y22px(p0)的准线为x,1,p,抛物线C的方程为y2x.又点M(t,1)在曲线C上,t1.(2)由(1)知,点M(1,1),从而nm,即点
14、Q(m,m),依题意,直线AB的斜率存在,且不为0,设直线AB的斜率为k(k0)且A(x1,y1),B(x2,y2),由得(y1y2)(y1y2)x1x2,故k2m1,所以直线AB的方程为ym(xm),即x2my2m2m0.由消去x,整理得y22my2m2m0,所以4m4m20,y1y22m,y1y22m2m.从而|AB| |y1y2|2.d2m(1m)1,当且仅当m1m,即m时,上式等号成立,又m满足4m4m20.d的最大值为1.5.如图,已知椭圆C:y21(a1)的上顶点为A,右焦点为F,直线AF与圆M:x2y26x2y70相切(1)求椭圆C的方程;(2)若不过点A的动直线l与椭圆C相交于
15、P,Q两点,且0,求证:直线l过定点,并求出该定点N的坐标(1)解将圆M的一般方程x2y26x2y70化为标准方程为(x3)2(y1)23,圆M的圆心为M(3,1),半径r.由A(0,1),F(c,0)(c)得直线AF:y1,即xcyc0.由直线AF与圆M相切,得.c或c(舍去)a,椭圆C的方程为y21.(2)证明由0,知APAQ,从而直线AP与坐标轴不垂直,由A(0,1)可设直线AP的方程为ykx1,直线AQ的方程为yx1(k0),将ykx1代入椭圆C的方程y21并整理得:(13k2)x26kx0,解得x0或x,因此P的坐标为,即.将上式中的k换成,得Q.直线l的方程为y,化简得直线l的方程
16、为yx.因此直线l过定点N.6(2015山东卷)平面直角坐标系xOy中,已知椭圆C:1(ab0)的离心率为,且点在椭圆C上(1)求椭圆C的方程;(2)设椭圆E:1,P为椭圆C上任意一点,过点P的直线ykxm交椭圆E于A,B两点,射线PO交椭圆E于点Q.()求的值;()求ABQ面积的最大值解(1)由题意知1.又,解得a24,b21.所以椭圆C的方程为y21.(2)由(1)知椭圆E的方程为1.()设P(x0,y0),由题意知Q(x0,y0)因为y1,又1,即1,所以2,即2.()设A(x1,y1),B(x2,y2)将ykxm代入椭圆E的方程,可得(14k2)x28kmx4m2160,由0,可得m2416k2,则有x1x2,x1x2.所以|x1x2|.因为直线ykxm与y轴交点的坐标为(0,m),所以OAB的面积S|m|x1x2|2.设t,将ykxm代入椭圆C的方程,可得(14k2)x28kmx4m240,由0,可得m214k2.由可知0t1,因此S22,故S2,当且仅当t1,即m214k2时取得最大值2.由()知,ABQ面积为3S,所以ABQ面积的最大值为6.特别提醒:教师配赠习题、课件、视频、图片、文档等各种电子资源见创新设计高考总复习光盘中内容.