1、3.3 计算导数教学过程:一、创设情景我们知道,导数的几何意义是曲线在某一点处的切线斜率,物理意义是运动物体在某一时刻的瞬时速度.那么,对于函数,如何求它的导数呢?由导数定义本身,给出了求导数的最基本的方法,但由于导数是用极限来定义的,所以求导数总是归结到求极限这在运算上很麻烦,有时甚至很困难,为了能够较快地求出某些函数的导数,这一单元我们将研究比较简捷的求导数的方法,下面我们求几个常用的函数的导数.二、新课讲授1.函数的导数根据导数定义,因为所以函数导数表示函数图像上每一点处的切线的斜率都为.若表示路程关于时间的函数,则可以解释为某物体的瞬时速度始终为,即物体一直处于静止状态.2.函数的导数
2、因为所以函数导数表示函数图像上每一点处的切线的斜率都为,若表示路程关于时间的函数,则可以解释为某物体做瞬时速度为的匀速运动.3.函数的导数因为所以函数导数表示函数图像上点处的切线的斜率都为,说明随着的变化,切线的斜率也在变化.另一方面,从导数作为函数在一点的瞬时变化率来看,表明:当时,随着的增加,函数减少得越来越慢;当时,随着的增加,函数增加得越来越快.若表示路程关于时间的函数,则可以解释为某物体做变速运动,它在时刻的瞬时速度为.4.函数的导数因为所以函数导数5.函数的导数因为所以函数导数推广: 若,则注:这里可以是全体实数.6. 基本初等函数的求导公式: (k,b为常数) (C为常数) 由你能发现什么规律? (为常数) 从上面这一组公式来看,我们只要掌握幂函数、指对数函数、正余弦函数的求导就可以了。三、课堂练习1.课本P13探究12.课本P13探究2四、回顾总结函数导数五、布置作业