ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:205KB ,
资源ID:1168173      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1168173-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2015届高考数学(人教理科)大一轮配套练透:第7章 立体几何 第4节.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2015届高考数学(人教理科)大一轮配套练透:第7章 立体几何 第4节.doc

1、课堂练通考点1已知直线a,b,平面,则以下三个命题:若ab,b,则a;若ab,a,则b;若a,b,则ab.其中真命题的个数是()A0B1C2 D3解析:选A对于,若ab,b,则应有a或a,所以不正确;对于,若ab,a,则应有b或b,因此不正确;对于,若a,b,则应有ab或a与b相交或a与b异面,因此是假命题综上,在空间中,以上三个命题都是假命题2下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB平面MNP的图形的序号是()A BC D解析:选C对于图形,平面MNP与AB所在的对角面平行,即可得到AB平面MNP;对于图形,ABPN,即可得到AB平面MNP;

2、图形无论用定义还是判定定理都无法证明线面平行,故选C.3(2014济南模拟)平面平面的一个充分条件是()A存在一条直线a,a,aB存在一条直线a,a,aC存在两条平行直线a,b,a,b,a,bD存在两条异面直线a,b,a,b,a,b解析:选D若l,al,a,a,则a,a,故排除A.若l,a,al,则a,故排除B.若l,a,al,b,bl,则a,b,故排除C.故选D.4.如图所示,在四面体ABCD中,M,N分别是ACD,BCD的重心,则四面体的四个面中与MN平行的是_解析:连接AM并延长,交CD于E,连接BN,并延长交CD于F,由重心性质可知,E,F重合为一点,且该点为CD的中点E,由,得MNA

3、B.因此,MN平面ABC且MN平面ABD.答案:平面ABC、平面ABD5.如图,在三棱柱ABC A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EFA1平面BCHG.证明:(1)GH是A1B1C1的中位线,GHB1C1.又B1C1BC,GHBC.B,C,H,G四点共面(2)E,F分别为AB,AC的中点,EFBC.EF平面BCHG,BC平面BCHG,EF平面BCHG.A1G綊EB,四边形A1EBG是平行四边形A1EGB.A1E平面BCHG,GB平面BCHG.A1E平面BCHG.A1EEFE,平面EFA1平面BCHG.课下提升

4、考能第组:全员必做题1若平面平面,直线a平面,点B,则在平面内且过B点的所有直线中()A不一定存在与a平行的直线B只有两条与a平行的直线C存在无数条与a平行的直线D存在唯一与a平行的直线解析:选A当直线a在平面内且过B点时,不存在与a平行的直线,故选A.2(2014石家庄模拟)已知,是两个不同的平面,给出下列四个条件:存在一条直线a,a,a;存在一个平面,;存在两条平行直线a,b,a,b,a,b;存在两条异面直线a,b,a,b,a,b.可以推出的是()A BC D解析:选C对于,平面与还可以相交;对于,当ab时,不一定能推出,所以是错误的,易知正确,故选C.3已知直线l平面,P,那么过点P且平

5、行于直线l的直线()A只有一条,不在平面内B只有一条,且在平面内C有无数条,不一定在平面内D有无数条,一定在平面内解析:选B由直线l与点P可确定一个平面,则平面,有公共点,因此它们有一条公共直线,设该公共直线为m,因为l,所以lm,故过点P且平行于直线l的直线只有一条,且在平面内,选B.4如图,在四面体ABCD中,截面PQMN是正方形,且PQAC,则下列命题中,错误的是()AACBDBAC截面PQMNCACBDD异面直线PM与BD所成的角为45解析:选C由题意可知PQAC,QMBD,PQQM,所以ACBD,故A正确;由PQAC可得AC截面PQMN,故B正确;由PNBD可知,异面直线PM与BD所

6、成的角等于PM与PN所成的角,又四边形PQMN为正方形,所以MPN45,故D正确;而ACBD没有论证来源5.如图,四边形ABCD是边长为1的正方形,MD平面ABCD,NB平面ABCD,且MDNB1,G为MC的中点则下列结论中不正确的是()AMCANBGB平面AMNC平面CMN平面AMND平面DCM平面ABN解析:选C显然该几何图形为正方体截去两个三棱锥所剩的几何体,把该几何体放置到正方体中(如图),作AN的中点H,连接HB,MH,GB,则MCHB,又HBAN,所以MCAN,所以A正确;由题意易得GBMH,又GB平面AMN,MH平面AMN,所以GB平面AMN,所以B正确;因为ABCD,DMBN,

7、且ABBNB,CDDMD,所以平面DCM平面ABN,所以D正确6(2013惠州调研)已知m,n是两条不同直线,是三个不同平面,下列命题中正确的有_若m,n,则mn;若,则;若m,m,则;若m,n,则mn.解析:若m,n,m,n可以平行,可以相交,也可以异面,故不正确;若,可以相交,故不正确;若m,m,可以相交,故不正确;若m,n,则mn,正确答案:7在正四棱柱ABCD A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,则点Q满足条件_时,有平面D1BQ平面PAO.解析:假设Q为CC1的中点,因为P为DD1的中点,所以QBPA.连接DB,因为P,O分别是DD1,D

8、B的中点,所以D1BPO,又D1B平面PAO,QB平面PAO,所以D1B平面PAO,QB平面PAO,又D1BQBB,所以平面D1BQ平面PAO.故Q满足条件Q为CC1的中点时,有平面D1BQ平面PAO.答案:Q为CC1的中点8设,为三个不同的平面,m,n是两条不同的直线,在命题“m,n,且_,则mn”中的横线处填入下列三组条件中的一组,使该命题为真命题,n;m,n;n,m.可以填入的条件有_解析:由面面平行的性质定理可知,正确;当n,m时,n和m在同一平面内,且没有公共点,所以平行,正确答案:或9(2014保定调研)已知直三棱柱ABC ABC满足BAC90,ABACAA2,点M,N分别为AB,

9、BC的中点(1)求证:MN平面AACC;(2)求三棱锥CMNB的体积解:(1)证明:如图,连接AB,AC,四边形ABBA为矩形,M为AB的中点,AB与AB交于点M,且M为AB的中点,又点N为BC的中点,MNAC,又MN平面AACC,且AC平面AACC,MN平面AACC.(2)由图可知VC MNBVM BCN,BAC90,BC2,又三棱柱ABC ABC为直三棱柱,且AA4,SBCN244.ABAC2,BAC90,点N为BC的中点,ANBC,AN.又BB平面ABC,ANBB,AN平面BCN.又M为AB的中点,M到平面BCN的距离为,VC MNBVM BCN4.10(2013江苏高考)如图,在三棱锥

10、SABC中,平面SAB平面SBC,ABBC,ASAB.过A作AFSB,垂足为F,点E,G分别是棱SA,SC的中点求证:(1)平面EFG平面ABC;(2)BCSA.证明:(1)因为ASAB,AFSB,垂足为F,所以F是SB的中点又因为E是SA的中点,所以EFAB.因为EF平面ABC,AB平面ABC,所以EF平面ABC.同理EG平面ABC.又EFEGE,所以平面EFG平面ABC.(2)因为平面SAB平面SBC,且交线为SB,又AF平面SAB,AFSB,所以AF平面SBC.因为BC平面SBC,所以AFBC.又因为ABBC,AFABA,AF平面SAB,AB平面SAB,所以BC平面SAB.因为SA平面S

11、AB,所以BCSA.第组:重点选做题1在梯形ABCD中,ABCD,AB平面,CD平面,则直线CD与平面内的直线的位置关系只能是()A平行 B平行和异面C平行和相交 D异面和相交解析:选B因为ABCD,AB平面,CD平面,所以CD平面,所以CD与平面内的直线可能平行,也可能异面2(2014汕头质检)若m,n为两条不重合的直线,为两个不重合的平面,则下列命题中真命题的序号是_若m,n都平行于平面,则m,n一定不是相交直线;若m,n都垂直于平面,则m,n一定是平行直线;已知,互相平行,m,n互相平行,若m,则n;若m,n在平面内的射影互相平行,则m,n互相平行解析:为假命题,为真命题,在中,n可以平行于,也可以在内,故是假命题,在中,m,n也可能异面,故为假命题答案:

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3