ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:208.50KB ,
资源ID:1166535      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1166535-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(高中数学:1.2综合法和分析法(二) 教案 (北师大选修2-2).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

高中数学:1.2综合法和分析法(二) 教案 (北师大选修2-2).doc

1、1.2 综合法和分析法教学过程:学生探究过程:合情推理分归纳推理和类比推理,所得的结论的正确性是要证明的,数学中的两大基本证明方法-直接证明与间接证明。若要证明下列问题:已知a,b0,求证教师活动:给出以上问题,让学生思考应该如何证明,引导学生应用不等式证明。教师最后归结证明方法。学生活动:充分讨论,思考,找出以上问题的证明方法设计意图:引导学生应用不等式证明以上问题,引出综合法的定义证明:因为,所以,因为,所以.因此, .P表示已知条件、已有的定义、定理、公理等,Q表示要证明的结论1. 综合法综合法:利用某些已经证明过的不等式(例如算术平均数与几何平均数定理)和不等式的性质推导出所要证明的不

2、等式成立,这种证明方法叫做综合法用综合法证明不等式的逻辑关系是:综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法例1、在ABC中,三个内角A,B,C的对边分别为,且A,B,C成等差数列, 成等比数列,求证ABC为等边三角形.分析:将 A , B , C 成等差数列,转化为符号语言就是2B =A + C; A , B , C为ABC的内角,这是一个隐含条件,明确表示出来是A + B + C =; a , b,c成等比数列,转化为符号语言就是此时,如果能把角和边统一起来,那么就可以进一步寻找角和边之间的关系,进而判断三角形的形状,余弦定理正好满

3、足要求于是,可以用余弦定理为工具进行证明证明:由 A, B, C成等差数列,有 2B=A + C 因为A,B,C为ABC的内角,所以A + B + C= 由 ,得B=.由a, b,c成等比数列,有.由余弦定理及,可得. 再由,得., 因此.从而A=C. 由,得A=B=C=.所以ABC为等边三角形解决数学问题时,往往要先作语言的转换,如把文字语言转换成符号语言,或把符号语言转换成图形语言等还要通过细致的分析,把其中的隐含条件明确表示出来例2、已知求证本题可以尝试使用差值比较和商值比较两种方法进行。 证明:1) 差值比较法:注意到要证的不等式关于对称,不妨设,从而原不等式得证。2)商值比较法:设

4、故原不等式得证。注:比较法是证明不等式的一种最基本、最重要的方法。用比较法证明不等式的步骤是:作差(或作商)、变形、判断符号。讨论:若题设中去掉这一限制条件,要求证的结论如何变换?2. 分析法证明数学命题时,还经常从要证的结论 Q 出发,反推回去,寻求保证 Q 成立的条件,明尸 2 成立,再去寻求尸 2 成立的充分条件尸 3 件、定理、定义、公理等)为止乞,再去寻求尸 1 成立的充分条件尸 2 ;为了证 直到找到一个明显成立的条件(已知条即使 Q 成立的充分条件尸 1 为了证明尸 1 成立,分析法:证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的条件,把证明不等式转化为判定这些

5、条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以断定原不等式成立,这种方法叫做分析法用分析法证明不等式的逻辑关系是:分析法的思维特点是:执果索因分析法的书写格式: 要证明命题B为真, 只需要证明命题为真,从而有 这只需要证明命题为真,从而又有 这只需要证明命题A为真而已知A为真,故命题B必为真例3、求证证明:因为都是正数,所以为了证明只需证明展开得 即 因为成立,所以成立即证明了说明:分析法是“执果索因”,步步寻求上一步成立的充分条件,它与综合法是对立统一的两种方法分析法论证“若A则B”这个命题的模式是:为了证明命题B为真,这只需要证明命题B1为真,从而有这只需要证明命题B2为真,

6、从而又有这只需要证明命题A为真而已知A为真,故B必真在本例中,如果我们从“2125 ”出发,逐步倒推回去,就可以用综合法证出结论。但由于我们很难想到从“2125”入手,所以用综合法比较困难。事实上,在解决问题时,我们经常把综合法和分析法结合起来使用:根据条件的结构特点去转化结论,得到中间结论Q;根据结论的结构特点去转化条件,得到中间结论 P若由P可以推出Q成立,就可以证明结论成立下面来看一个例子例4 已知,且 求证:。分析:比较已知条件和结论,发现结论中没有出现角,因此第一步工作可以从已知条件中消去.观察已知条件的结构特点,发现其中蕴含数量关系,于是,由 2一2 得把与结论相比较,发现角相同,

7、但函数名称不同,于是尝试转化结论:统一函数名称,即把正切函数化为正(余)弦函数把结论转化为,再与比较,发现只要把中的角的余弦转化为正弦,就能达到目的证明:因为,所以将 代入,可得. 另一方面,要证即证 , 即证,即证,即证。由于上式与相同,于是问题得证。例5 证明:通过水管放水,当流速相同时,如果水管截面的周长相等,那么截面是圆的水管比截面是正方形的水管流量大分析:当水的流速相同时,水管的流量取决于水管截面面积的大小,设截面的周长为L,则周长为L的圆的半径为,截面积为;周长为L的正方形边长为,截面积为所以本题只需证明证明:设截面的周长为L,依题意,截面是圆的水管的截面面积为,截面是正方形的水管的截面面积为,所以本题只需证明为了证明上式成立,只需证明 两边同乘以正数,得因此,只需证明上式是成立的,所以这就证明了,通过水管放水,当流速相同时,如果水管截面的周长相等,那么截面是圆的水管比截面是正方形的水管流量大说明:对于较复杂的不等式,直接运用综合法往往不易入手,因此,通常用分析法探索证题途径,然后用综合法加以证明,所以分析法和综合法经常是结合在一起使用的巩固练习:第81页练习1 , 2 , 3课后作业:第84页 1,2, 3

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3