ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:139.50KB ,
资源ID:116133      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-116133-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020-2021学年人教A版数学必修4训练:第三章 三角恒等变换 章末综合检测 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2020-2021学年人教A版数学必修4训练:第三章 三角恒等变换 章末综合检测 WORD版含解析.doc

1、章末综合检测(三)时间:120分钟满分:150分一、选择题(本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的)1已知cos x,则cos 2x()AB.CD.解析:cos 2x2cos2 x121.故选D.答案:D2已知cos,则sin 2()A. B C. D解析:cos,2cos2121coscossin 2.答案:D3若,sin 2,则sin ()A. B. C. D.解析:,2,cos 2.sin2,sin .答案:D4ysincoscossin的图象的一条对称轴方程是()Ax BxCx Dx解析:ysincoscossinsinsincos x

2、,故选C.答案:C5已知等腰三角形顶角的余弦值等于,则这个三角形底角的正弦值为()A. BC. D解析:设这个等腰三角形的顶角为2,底角为,则22且cos 2,.sin sincos .答案:C64sin 80()A. B C. D23解析:因为4sin 80,故选B.答案:B7设函数f(x)2cos2xsin 2xa(a为实常数)在区间上的最小值为4,则的值为()A4 B6 C4 D3解析:f(x)2cos2xsin 2xa1cos 2xsin 2xa2sina1.当x时,2x,f(x)min2a14.a4.故选C.答案:C8已知为第二象限角,且cos,则的值是()A1 B. C1 D2解析

3、:为第二象限角,为第一或第三象限角cos,为第三象限角且sin,1.故选C.答案:C9ysinsin 2x的一个单调递增区间是()A. B.C. D.解析:ysinsin 2xsin 2xcoscos 2xsinsin 2xsin 2xcos 2xsin.ysin的单调递增区间是ysin的单调递减区间由2k2x2k,kZ,得kxk,kZ.令k0,得x.故选B.答案:B10若3coscos()0,则cos2sin 2的值是()A B C. D.解析:3coscos()0,由诱导公式可得3sin cos 0,即tan ,cos2sin 2.答案:C11当y2cos x3sin x取得最大值时,ta

4、n x的值是()A. B C. D4解析:y2cos x3sin x(sin cos xcos sin x)sin(x)当sin(x)1,即x2k(kZ)时,y取到最大值2kx(kZ),sin cos x,cos sin x,cos xsin ,sin xcos .tan x.答案:B12已知A,B,C是ABC的三个内角,设f(B)4sin Bcos2cos 2B.若f(B)m2恒成立,则实数m的取值范围是()A(,1) B(3,)C(,3) D(1,)解析:f(B)4sin Bcos2cos 2B4sin Bcos 2B2sin B(1sin B)(12sin2B)2sin B1.f(B)m

5、2sin B1恒成立0B,0sin B1.11.故选D.答案:D二、填空题(本大题共4小题,每小题5分,共20分把答案填在题中横线上)13tan 204sin 20_解析:原式4sin 20.答案:14已知sincos ,则cos_解析:sincos ,sincos cossin cos sin cos sin,sin,cos12sin212.答案:15设tan (1m),tan()(tan tan m),且,为锐角,则的值为_解析:从已知条件中解出,显然是十分困难的由题设条件,比较容易联想到正切的和角公式tan (1m),tan()(tan tan m),两式相减得tan tan (1tan

6、 tan ),.又,为锐角,所以.答案:16已知、(0,)且tan(),cos ,则tan(2)_解析:0,cos ,sin ,tan .又tan(),tan tan().又tan(2)tan()1.答案:1三、解答题(本大题共6小题,共70分解答应写出文字说明,证明过程或演算步骤)17(10分)已知cos ,sin ,是第三象限角,.(1)求sin 2的值;(2)求cos(2)的值解析:(1)是第三象限角,cos ,sin ,sin 22sin cos 2.(2),sin ,cos .又cos 22cos2121,cos(2)cos 2cos sin 2sin .18(12分)在ABC中,m

7、(2sin Bsin C,cos C),n(sin A,cos A),且mn.(1)求角A的值;(2)求y2sin2Bcos的最大值解析:(1)mn,(2sin Bsin C)cos Asin Acos C0,2sin Bcos Asin(AC)0,即sin B(2cos A1)0.sin B0,2cos A10,即cos A,A.(2)y2sin2Bcos1cos 2Bcoscos 2Bsinsin 2Bsin 2Bcos 2B1sin1.A,0B,2B,当2B,即B时,y有最大值2.19(12分)已知向量m(cos x,sin x),n(2sin x,2cos x),函数f(x)mn,xR

8、.(1)求函数f(x)的最大值;(2)若x且f(x)1,求cos的值解析:(1)因为f(x)mncos x(2sin x)sin x(2cos x)2(sin xcos x)4sin(xR),所以f(x)的最大值是4.(2)因为f(x)1,所以sin.又x,即x,所以cos.coscoscoscossinsin.20. (12分)如图,点P在直径AB1的半圆上移动,过P作圆的切线PT且PT1,PAB,问为何值时,四边形ABTP的面积最大?解析:AB为直径,APB90,AB1,PAcos ,PBsin .又PT切圆于P点,TPBPAB,S四边形ABTPSPABSTPBPAPBPTPBsin si

9、n cos sin2sin 2(1cos 2)(sin 2cos 2)sin.0,2,当2,即时,S四边形ABTP最大21(12分)已知函数f(x)4sincos x.(1)求函数f(x)的最小正周期和单调递增区间;(2)若函数g(x)f(x)m在区间上有两个不同的零点x1,x2,求实数m的取值范围,并计算tan(x1x2)的值解析:(1)f(x)4sincos x4cos x2sin xcos x2cos2xsin 2xcos 2x2sin,函数f(x)的最小正周期为T.由2k2x2k,得kxk(kZ)f(x)的递增区间为(kZ)(2)方程g(x)f(x)m0同解于f(x)m,在直角坐标系中

10、画出函数yf(x)2sin在上的图象如图,由图象可知,当且仅当m,2)时,方程f(x)m有两个不同的解x1,x2,且x1x22,故tan(x1x2)tantan.22(12分)已知向量a(m,cos 2x),b(sin 2x,n),函数f(x)ab,且yf(x)的图象过点和点.(1)求m,n的值;(2)将yf(x)的图象向左平移(0)个单位后得到函数yg(x)的图象,若yg(x)图象上各最高点到点(0,3)的距离的最小值为1,求yg(x)的单调递增区间解析:(1)由题意知f(x)abmsin 2xncos 2x.因为yf(x)的图象过点和,所以即解得(2)由(1)知f(x)sin 2xcos 2x2sin.由题意知g(x)f(x)2sin.设yg(x)的图象上符合题意的最高点为(x0,2)由题意知x11,所以x00,即到点(0,3)的距离为1的最高点为(0,2)将其代入yg(x)得sin1.因为0,所以,因此g(x)2sin2cos 2x.由2k2x2k,kZ得kxk,kZ,所以函数yg(x)的单调递增区间为,kZ.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3