ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:112KB ,
资源ID:1160919      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1160919-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022春九年级数学下册 第29章 直线与圆的位置关系29.4 切线长定理第1课时切线长定理学案(新版)冀教版.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2022春九年级数学下册 第29章 直线与圆的位置关系29.4 切线长定理第1课时切线长定理学案(新版)冀教版.doc

1、 切线长定理一. 本周教学内容: 切线长定理、弦切角、和圆有关的比例线段学习目标 1. 切线长概念 切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。 2. 切线长定理 对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。

2、3. 弦切角、顶点在圆上,一边和圆相交,另一边和圆相切的角。 直线AB切O于P,PC、PD为弦,图中几个弦切角呢?(四个) 4. 弦切角定理:弦切角等于其所夹的弧所对的圆周角。 5. 弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。 6. 遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。 7. 与圆有关的比例线段定理图形已知结论证法相交弦定理O中,AB、CD为弦,交于PPAPBPCPD连结AC、BD,证:APCDPB相交弦定理的推论O中,AB为直径,CDAB于PPC2PAPB用相交弦定理切割线定理O中,PT切O于T,割线PB交O于APT2PAPB连结TA、TB,证

3、:PTBPAT切割线定理推论PB、PD为O的两条割线,交O于A、CPAPBPCPD过P作PT切O于T,用两次切割线定理圆幂定理O中,割线PB交O于A,CD为弦PCPDr2OP2PAPBOP2r2r为O的半径延长PO交O于M,延长OP交O于N,用相交弦定理证;过P作切线用切割线定理勾股定理证 8. 圆幂定理:过一定点P向O作任一直线,交O于两点,则自定点P到两交点的两条线段之积为常数|(R为圆半径),因为叫做点对于O的幂,所以将上述定理统称为圆幂定理。 例1. 如图1,正方形ABCD的边长为1,以BC为直径。在正方形内作半圆O,过A作半圆切线,切点为F,交CD于E,求DE:AE的值。图1 解:由

4、切线长定理知:AFAB1,EFCE 设CE为x,在RtADE中,由勾股定理 , 例2. O中的两条弦AB与CD相交于E,若AE6cm,BE2cm,CD7cm,那么CE_cm。图2 解:由相交弦定理,得 AEBECEDE AE6cm,BE2cm,CD7cm, , , 即 CE3cm或CE4cm。 故应填3或4。 点拨:相交弦定理是较重要定理,结果要注意两种情况的取舍。 例3. 已知PA是圆的切线,PCB是圆的割线,则_。 解:PP PACB, PACPBA, , 。 又PA是圆的切线,PCB是圆的割线,由切割线定理,得 , 即 , 故应填PC。 点拨:利用相似得出比例关系式后要注意变形,推出所需

5、结论。 例4. 如图3,P是O外一点,PC切O于点C,PAB是O的割线,交O于A、B两点,如果PA:PB1:4,PC12cm,O的半径为10cm,则圆心O到AB的距离是_cm。图3 解:PC是O的切线,PAB是O的割线,且PA:PB1:4 PB4PA 又PC12cm 由切割线定理,得 , PB4624(cm) AB24618(cm) 设圆心O到AB距离为d cm, 由勾股定理,得 故应填。 例5. 如图4,AB为O的直径,过B点作O的切线BC,OC交O于点E,AE的延长线交BC于点D,(1)求证:;(2)若ABBC2厘米,求CE、CD的长。图4 点悟:要证,即要证CEDCBE。 证明:(1)连

6、结BE (2)。 又, 厘米。 点拨:有切线,并需寻找角的关系时常添辅助线,为利用弦切角定理创造条件。 例6. 如图5,AB为O的直径,弦CDAB,AE切O于A,交CD的延长线于E。图5 求证: 证明:连结BD, AE切O于A, EADABD AEAB,又ABCD, AECD AB为O的直径 ADB90 EADB90 ADEBAD CDAB ADBC, 例7. 如图6,PA、PC切O于A、C,PDB为割线。求证:ADBCCDAB图6 点悟:由结论ADBCCDAB得,显然要证PADPBA和PCDPBC 证明:PA切O于A, PADPBA 又APDBPA, PADPBA 同理可证PCDPBC PA

7、、PC分别切O于A、C PAPC ADBCDCAB 例8. 如图7,在直角三角形ABC中,A90,以AB边为直径作O,交斜边BC于点D,过D点作O的切线交AC于E。图7 求证:BC2OE。 点悟:由要证结论易想到应证OE是ABC的中位线。而OAOB,只须证AECE。 证明:连结OD。 ACAB,AB为直径 AC为O的切线,又DE切O于D EAED,ODDE OBOD,BODB 在RtABC中,C90B ODE90 CEDC EDEC AEEC OE是ABC的中位线 BC2OE 例9. 如图8,在正方形ABCD中,AB1,是以点B为圆心,AB长为半径的圆的一段弧。点E是边AD上的任意一点(点E与

8、点A、D不重合),过E作所在圆的切线,交边DC于点F,G为切点。 当DEF45时,求证点G为线段EF的中点;图8 解:由DEF45,得 , DFEDEF DEDF 又ADDC AEFC 因为AB是圆B的半径,ADAB,所以AD切圆B于点A;同理,CD切圆B于点C。 又因为EF切圆B于点G,所以AEEG,FCFG。 因此EGFG,即点G为线段EF的中点。【模拟试题】(答题时间:40分钟)一、选择题 1. 已知:PA、PB切O于点A、B,连结AB,若AB8,弦AB的弦心距3,则PA( ) A. B. C. 5D. 8 2. 下列图形一定有内切圆的是( ) A. 平行四边形B. 矩形 C. 菱形D.

9、 梯形 3. 已知:如图1直线MN与O相切于C,AB为直径,CAB40,则MCA的度数( )图1 A. 50B. 40C. 60D. 55 4. 圆内两弦相交,一弦长8cm且被交点平分,另一弦被交点分为1:4,则另一弦长为( ) A. 8cmB. 10cmC. 12cmD. 16cm 5. 在ABC中,D是BC边上的点,AD,BD3cm,DC4cm,如果E是AD的延长线与ABC的外接圆的交点,那么DE长等于( ) A. B. C. D. 6. PT切O于T,CT为直径,D为OC上一点,直线PD交O于B和A,B在线段PD上,若CD2,AD3,BD4,则PB等于( ) A. 20B. 10C. 5

10、D. 二、填空题 7. AB、CD是O切线,ABCD,EF是O的切线,它和AB、CD分别交于E、F,则EOF_度。 8. 已知:O和不在O上的一点P,过P的直线交O于A、B两点,若PAPB24,OP5,则O的半径长为_。 9. 若PA为O的切线,A为切点,PBC割线交O于B、C,若BC20,则PC的长为_。 10. 正ABC内接于O,M、N分别为AB、AC中点,延长MN交O于点D,连结BD交AC于P,则_。三、解答题 11. 如图2,ABC中,AC2cm,周长为8cm,F、K、N是ABC与内切圆的切点,DE切O于点M,且DEAC,求DE的长。图2 12. 如图3,已知P为O的直径AB延长线上一

11、点,PC切O于C,CDAB于D,求证:CB平分DCP。图3 13. 如图4,已知AD为O的直径,AB是O的切线,过B的割线BMN交AD的延长线于C,且BMMNNC,若AB,求O的半径。图4参考答案一、选择题 1. A2. C3. A4. B5. B6. A二、填空题 7. 908. 19. 3010. 三、解答题: 11. 由切线长定理得BDE周长为4,由BDEBAC,得DE1cm 12. 证明:连结AC,则ACCB CDAB,ACBCDB,A1 PC为O的切线,A2,又12, BC平分DCP 13. 设BMMNNCxcm 又 又OA是过切点A的半径,OAAB即ACAB 在RtABC中,由勾股定理,得, 由割线定理:,又 半径为。

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3