ImageVerifierCode 换一换
格式:DOC , 页数:19 ,大小:1.77MB ,
资源ID:1159422      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1159422-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(高中数学讲义100微专题079利用点的坐标解决圆锥曲线问题.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

高中数学讲义100微专题079利用点的坐标解决圆锥曲线问题.doc

1、微专题79 利用点的坐标处理解析几何问题 有些解析几何的题目,问题的求解不依赖于传统的“设点,联立,消元,韦达定理整体代入”步骤,而是能够计算出交点的坐标,且点的坐标并不复杂,然后以点的坐标作为核心去处理问题。一、基础知识:1、韦达定理的实质:在处理解析几何的问题时,韦达定理的运用最频繁的,甚至有的学生将其视为“必备结构”,无论此题是否有思路,都先联立方程,韦达定理。然而使用“韦达定理”的实质是什么?实质是“整体代入”的一种方式,只是因为在解析几何中,一些问题的求解经常与相关,利用“韦达定理”可进行整体代入,可避免因为这几个根的形式过于复杂导致运算繁琐。所以要理解“韦达定理”并不是解析几何的必

2、备工具,只是在需要进行整体代入时,才运用的一种手段。2、利用点坐标解决问题的优劣:(1)优点:如果能得到点的坐标,那么便可应对更多的问题,且计算更为灵活,不受形式的约束(2)缺点:有些方程的根过于复杂(例如用求根公式解出的根),从而使得点的坐标也变得复杂导致运算繁琐。那么此类问题则要考虑看能否有机会进行整体的代入3、求点坐标的几种类型:(1)在联立方程消元后,如果发现交点的坐标并不复杂(不是求根公式的形式),则可考虑把点的坐标解出来(用核心变量进行表示)(2)直线与曲线相交,若其中一个交点的坐标已知,则另一交点必然可求(可用韦达定理或因式分解求解)4、在利用点的坐标处理问题时也要注意运算的技巧

3、,要将运算的式子与条件紧密联系,若能够整体代入,也要考虑整体代入以简化运算。(整体代入是解析几何运算简化的精髓)二、典型例题:例1:已知椭圆上的点到它的两个焦点的距离之和为4,以椭圆的短轴为直径的圆经过这两个焦点,点分别是椭圆的左右顶点(1)求圆和椭圆的方程(2)已知分别是椭圆和圆上的动点(位于轴的两侧),且直线与轴平行,直线分别与轴交于点,求证:为定值解:(1)依题意可得,过焦点,且 ,再由可得 椭圆方程为,圆方程为 (2)思路:条件主要围绕着点展开,所以以为核心,设,由与轴平行,可得。若要证明为定值,可从的三角函数值下手,在解析中角的余弦值可以与向量的数量积找到联系,从而能够转化为坐标运算

4、。所以考虑,模长并不利于计算,所以先算,考虑利用条件设出方程,进而坐标可用核心变量表示,再进行数量积的坐标运算可得,从而,即为定值解:设 与轴平行,设,由所在椭圆和圆方程可得:由椭圆可知: 令,可得:同理:可得,代入可得:,即为定值思路二:本题还可以以其中一条直线为入手点(例如),以斜率作为核心变量,直线与椭圆交于两点,已知点坐标利用韦达定理可解出点坐标(用表示),从而可进一步将涉及的点的坐标都用来进行表示,再计算也可以,计算步骤如下:解:设,由椭圆方程可得:所以设直线,联立方程:,代入到直线方程可得:,由,令可得:设,则由在圆上可得:,再由代入可得:,即为定值例2:设椭圆的左右焦点分别为,右

5、顶点为,上顶点为,已知(1)求椭圆的离心率(2)设为椭圆上异于其顶点的一点,以线段为直径的圆经过点,经过原点的直线与该圆相切,求直线的斜率解:(1)由椭圆方程可知:,即(2)由(1)可得椭圆方程为 设以线段为直径的圆经过点联立方程:,整理可得:,解得:,代入直线方程: 可知的中点为,圆方程为设直线:,整理可得:,解得:直线的斜率为或例3:(2014,重庆)如图所示,设椭圆的左右焦点分别为,点在椭圆上,的面积为 (1)求椭圆的标准方程(2)设圆心在轴上的圆与椭圆在轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径解:(1)设,由可得: ,解得 在中, 椭圆方程

6、为: (2)如图:设圆与椭圆相交,是两个交点,是圆的切线,且,则由对称性可得: 由(1)可得 ,联立方程,解得(舍)或过且分别与垂直的直线的交点即为圆心 由是圆的切线,且,可得:因为 为等腰直角三角形 例4:已知椭圆的焦距为,设右焦点为,离心率为 (1)若 ,求椭圆的方程(2)设为椭圆上关于原点对称的两点,的中点为,的中点为,若原点在以线段为直径的圆上 证明:点在定圆上 设直线的斜率为,若,求的取值范围解:(1)依题意可得: 所以椭圆方程为: (2)思路:设,则,由此可得坐标(用进行表示),而在以为直径的圆上可得:,所以得到关于的方程,由方程便可判定出点的轨迹解:设,则。因为,且为的中点所以有

7、 在以为直径的圆上 点在定圆上 消去可得:(*)而, 代入(*)可得: 所以解得: 例5:已知椭圆的上顶点为,左焦点为,离心率为(1)求直线的斜率(2)设直线与椭圆交于点(异于点),过点且垂直于的直线与椭圆交于点(异于点),直线与轴交于点, 求的值 若,求椭圆方程解:(1)由可知设,(2) 设 椭圆方程为:联立方程:,整理后可得:可解得: 因为 设联立方程:,整理后可得:,解得,即设,斜率为,由弦长公式可知: 由可得: 由可得:椭圆方程为例6:已知椭圆的左焦点为,离心率为,点在椭圆上且位于第一象限,直线被圆截得的线段的长为,(1)求直线的斜率(2)求椭圆的方程(3)设动点在椭圆上,若直线的斜率

8、大于,求直线(为原点)斜率的取值范围解:(1)由已知可得 椭圆方程为设直线,其中 由可得:解得:(2)由(1)可得:解得:或在第一象限,即可得:椭圆方程为:(3)由(2)可知,设,设的斜率为联立方程: 可解得:设直线的斜率为,即当时, 可知 ,由可得:当时,可知 ,由可得:综上所述:例7:已知椭圆的离心率为,其短轴的两端点分别为.(1)求椭圆的方程;(2)若是椭圆上关于轴对称的两个不同点,直线与轴分别交于点.试判断以为直径的圆是否过定点,如经过,求出定点坐标;如不过定点,请说明理由.解:(1) 由短轴顶点可得: 椭圆方程为 (2)设,则对称点 从而直线的方程为:,令解得:,设中点为则 半径 以

9、为直径的圆方程为: 代入可得:,代入可得:即 时,无论为何值等式均成立圆恒过 例8:如图,设抛物线的准线与轴交于,焦点为,以为焦点,离心率的椭圆与抛物线在轴上方的交点为,延长交抛物线于点,是抛物线上一动点,且在之间运动(1)当时,求椭圆的方程(2)当的边长恰好是三个连续的自然数时,求面积的最大值 解:(1)时,焦点坐标 椭圆的方程为: (2)由可得:,即 椭圆方程为: 代入解得: 边长为3个连续的自然数 抛物线方程为, 即,代入抛物线方程可得:解得 设, 由可得: 例9:在平面直角坐标系中,点为动点,分别为椭圆的左,右焦点,已知为等腰三角形(1)求椭圆的离心率 (2)设直线与椭圆相交于两点,是

10、直线上的点,满足,求点的轨迹方程解:(1)设,由图可知,为等腰三角形即 ,代入可得:,解得:(舍)或 (2)思路:由(1)可将椭圆方程化简为:,与直线的方程联立,即消元后发现方程形式为,形式极其简单,所以直接求出点的坐标可得:,进而设所求点。将坐标化后,再利用即可得到关于的方程:,方程中含有,所以考虑利用直线方程将消掉:,代入即可得到轨迹方程解: 椭圆方程转化为:即即 的方程为:,设,联立方程可得:,消去,方程转化为: 解得: 设,则 由可得:,化简可得: 因为,所以,代入式化简可得: 将代入,可得: 的轨迹方程为:例10:如图,分别为椭圆的左右焦点,椭圆上的点到距离的最大值为5,离心率为,是椭圆上位于轴上方的两点,且直线与平行。(1)求椭圆的方程(2)设与的交点为,求证:为定值解:(1),依椭圆性质可得:椭圆上的点到焦点的距离最大值为 所以椭圆方程为(2)解:由(1)可得:,设 设直线,与椭圆联立方程:,整理可得: 由可得: 同理,设直线,与椭圆联立方程:整理可得: 由可得: 同理 由可得: 代入到可得:为定值

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3