ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:326.50KB ,
资源ID:1155901      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1155901-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(高中数学第8章圆锥曲线方程(第9课时)双曲线及其标准方程(2).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

高中数学第8章圆锥曲线方程(第9课时)双曲线及其标准方程(2).doc

1、课 题:83双曲线及其标准方程(二)1使学生掌握双曲线的定义,熟记双曲线的标准方程,并能初步应用;2使学生初步会按特定条件求双曲线的标准方程; 3培养学生发散思维的能力教学重点:标准方程及其简单应用教学难点:双曲线标准方程的推导及待定系数法解二元二次方程组授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程:一、复习引入: 名 称椭 圆双 曲 线图 象定 义 平面内到两定点的距离的和为常数(大于)的动点的轨迹叫椭圆。即 当22时,轨迹是椭圆, 当2=2时,轨迹是一条线段 当22时,轨迹不存在平面内到两定点的距离的差的绝对值为常数(小于)的动点的轨迹叫双曲线。即当22时,轨迹

2、是双曲线当2=2时,轨迹是两条射线当22时,轨迹不存在标准方 程 焦点在轴上时: 焦点在轴上时: 注:是根据分母的大小来判断焦点在哪一坐标轴上焦点在轴上时: 焦点在轴上时:注:是根据项的正负来判断焦点所在的位置常数的关 系 (符合勾股定理的结构), 最大,(符合勾股定理的结构)最大,可以二、讲解范例:例1 已知双曲线的焦点在轴上,中心在原点,且点,在此双曲线上,求双曲线的标准方程分析:由于已知焦点在轴上,中心在原点,所以双曲线的标准方程可用设出来,进行求解 本题是用待定系数法来解的,得到的关于待定系数的一个分式方程组,并且分母的次数是2,解这种方程组时利用换元法可将它化为二元二次方程组;也可将

3、的倒数作为未知数,直接看作二元一次方程组 解:因为双曲线的焦点在轴上,中心在原点,所以设所求双曲线的标准方程为 ()则有 ,即解关于的二元一次方程组,得 所以,所求双曲线的标准方程为 变式例题1 点A位于双曲线上,是它的两个焦点,求的重心G的轨迹方程 分析:要求重心的轨迹方程,必须知道三角形的三个顶点的坐标,利用相关点法进行求解 注意限制条件 解:设的重心G的坐标为,则点A的坐标为因为点A位于双曲线上,从而有,即所以,的重心G的轨迹方程为 点评:求轨迹方程,常用的方法是直接求法和间接求法两种 例1是直接利用待定系数法求轨迹方程 本题则是用间接法(也叫代入法)来解题,补充本例是为了进一步提高学生

4、分析问题和解决问题的能力 另外本题所求轨迹中包含一个隐含条件,它表现为轨迹上点的坐标应满足一个不等关系,而这一点正是学生容易忽略,造成错误的地方,所以讲解本题有利于培养学生数学思维的缜密性,养成严谨细致的学习品质 变式例题2 已知的底边BC长为12,且底边固定,顶点A是动点,使,求点A的轨迹分析:首先建立坐标系,由于点A的运动规律不易用坐标表示,注意条件的运用,可利用正弦定理将其化为边的关系,注意有关限制条件解:以底边BC 为轴,底边BC的中点为原点建立坐标系,这时,由得,即 所以,点A的轨迹是以为焦点,2=6的双曲线的左支 其方程为:点评:求轨迹方程的过程中,有一个重要的步骤就是找出(或联想

5、到)轨迹上的动点所满足的几何条件,列方程就是根据这些条件确定的,由于轨迹问题比较普遍,题型多样,有些轨迹上的动点满足的几何条件可能比较隐蔽和复杂解决它需要突出形数结合的思考方法,运用逻辑推理,结合平面几何的基本知识,分析、归纳,这里安排本例就是针对以上情况来进行训练的 例2 一炮弹在某处爆炸,在A处听到爆炸声的时间比在B处晚2s(1)爆炸点应在什么样的曲线上?(2)已知A、B两地相距800m,并且此时声速为340 ms,求曲线的方程分析:解应用题的关键是建立数学模型 根据本题设和结论,注意到在A处听到爆炸声的时间比B处晚2s,这里声速取同一个值 解:(1)由声速及A、B两处听到爆炸声的时间差,

6、可知A、B两处与爆炸点的距离的差,因此爆炸点应位于以A、B为焦点的双曲线上因为爆炸点离A处比离B处更远,所以爆炸点应在靠近B处的一支上(2)如图,建立直角坐标系,使A、B两点在轴上,并且点O与线段AB的中点重合设爆炸点P的坐标为,则 |PA|PB|=3402=680,即 2680,340又|AB|=800, 2c=800,c=400,44400 |PA|PB|6800, 0所求双曲线的方程为 (0)例2说明,利用两个不同的观测点测得同一炮弹爆炸声的时间差,可以确定爆炸点所在的双曲线的方程,但不能确定爆炸点的准确位置如果再增设一个观测点C,利用B、C(或A、C)两处测得的爆炸声的时间差,可以求出

7、另一个双曲线的方程,解这两个方程组成的方程组,就能确定爆炸点的准确位置这是双曲线的一个重要应用想一想,如果A、B两处同时听到爆炸声,那么爆炸点应在什么样的曲线上(爆炸点应在线段AB的中垂线上)点评:本例是培养学生应用双曲线知识解决实际问题的一道典型题目,安排在此非常有利于强化学生“应用数学”的意识,后面对“想一想”的教学处理,有利于调动学生的学习主动性和积极性,培养他们的发散思维能力例3求与圆及都外切的动圆圆心的轨迹方程解:设动圆的半径为r,则由动圆与定圆都外切得,又因为,由双曲线的定义可知,点M的轨迹是双曲线的一支所求动圆圆心的轨迹是双曲线的一支,其方程为: 三、课堂练习:1判断方程所表示的

8、曲线。解:当时,即当时,是椭圆;当时,即当时,是双曲线;2求焦点的坐标是(-6,0)、(6,0),并且经过点A(-5,2)的双曲线的标准方程。答案: 3求经过点和,焦点在y轴上的双曲线的标准方程答案:4椭圆和双曲线有相同的焦点,则实数的值是 ( ) A B C 5 D 9答案:B5已知是双曲线的焦点,PQ是过焦点的弦,且PQ的倾斜角为600,那么的值为(答案: 416)6设是双曲线的焦点,点P在双曲线上,且,则点P到轴的距离为( ) A 1 B C 2 D 答案:B 的面积为,从而有7P为双曲线上一点,若F是一个焦点,以PF为直径的圆与圆的位置关系是()A 内切 B 外切 C 外切或内切 D 无公共点或相交答案:C 四、小结 :本课着重讲解了待定系数法,代入法及利用定义求双曲线的标准方程,学习了双曲线的一个重要应用 五、课后作业:六、板书设计(略)七、课后记:

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3