1、高考资源网() 您身边的高考专家温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。核心考点精准研析考点一类比推理1.运用祖暅原理计算球的体积时,构造一个底面半径和高都与球半径相等的圆柱,与半球(如图一)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥(如图二),用任何一个平行于底面的平面去截它们时,可证得所截得的两个截面面积相等,由此证明该几何体与半球体积相等.现将椭圆+=1绕y轴旋转一周后得一橄榄状的几何体(如图三),类比上述方法,运用祖暅原理可求得其体积等于()A.4B.8C.16
2、D.322.我们知道:在平面内,点(x0,y0)到直线Ax+By+C=0的距离公式d=,通过类比的方法,可求得:在空间中,点(2,4,1)到直线x+2y+2z+3=0的距离为()A.3B.5C.D.3【解析】1.选C.构造一个底面半径为2,高为3的圆柱,在圆柱中挖去一个以圆柱下底面圆心为顶点的圆锥,则当截面与底面距离为h(0h3)时,小圆锥的底面半径为r,则=,所以r=h,故截面面积为4-,把y=h代入椭圆+=1可得x=,所以橄榄球形几何体的截面面积为x2=4-,由祖暅原理可得橄榄球形几何体的体积V=2(V圆柱-V圆锥)=2=16.2.选B.类比平面内点到直线的距离公式,可得空间中点(x0,y
3、0,z0)到直线Ax+By+Cz+D=0的距离公式为d=,则所求距离d=5.类比推理的分类考点二演绎推理【典例】已知数列an中,a1=1,an+1=(nN+).世纪金榜导学号(1)求a2,a3,a4的值,猜想数列an的通项公式.(2)运用(1)中的猜想,证明数列是等差数列,并注明大前提、小前提和结论.【解题导思】序号题目拆解(1)猜想数列的通项公式根据a2,a3,a4的结构特征归纳猜想(2)证明数列是等差数列证明-=常数【解析】(1)因为数列an中,a1=1,an+1=,a2=,a3=,a4=,猜想:an=.(2)因为通项公式为an的数列an,若an+1-an=d,d是常数,则an是等差数列,
4、大前提又因为-=,为常数;小前提所以数列是等差数列.结论演绎推理的推证规则(1)演绎推理是从一般到特殊的推理,其一般形式是三段论,应用三段论解决问题时,应当首先明确什么是大前提和小前提,如果前提是显然的,则可以省略.(2)在推理论证过程中,一些稍复杂一点的证明题常常要由几个三段论才能完成.设数列an的前n项和为Sn,且满足an=2-Sn(nN*).(1)求a1,a2,a3,a4的值并写出其通项公式.(2)用三段论证明数列an是等比数列.【解析】(1)由an=2-Sn,当n=1时,a1=2-S1=2-a1,解得a1=1,当n=2时,a2=2-S2=2-a1-a2,解得a2=,当n=3时,a3=2-S3=2-a1-a2-a3,解得a3=,当n=4时,a4=2-S4=2-a1-a2-a3-a4,解得a4=,由此归纳推理得an=(nN*).(2)因为通项公式为an的数列an,若=p,p是非零常数,则an是等比数列;因为通项公式an=,又=;所以通项公式an=的数列an是等比数列.关闭Word文档返回原板块- 4 - 版权所有高考资源网