第十教时教材:等比数列的前项和目的:要求学生掌握求等比数列前项的和的(公式),并了解推导公式所用的方法。过程:一、复习等比数列的通项公式,有关性质,及等比中项等概念。二、引进课题,采用印度国际象棋发明者的故事,即求 用错项相消法推导结果,两边同乘以公比: :这是一个庞大的数字184,以小麦千粒重为40计算,则麦粒总质量达7000亿吨国王是拿不出来的。三、一般公式推导:设 乘以公比, -:,时: 时:注意:(1)和各已知三个可求第四个, (2)注意求和公式中是,通项公式中是不要混淆, (3)应用求和公式时,必要时应讨论的情况。四、例1、(P131,例一略)直接应用公式。 例2、(P131,例二略)应用题,且是公式逆用(求),要用对数算。 例3、(P131-132,例三略)简单的“分项法”。 例4、设数列为求此数列前项的和。 解:(用错项相消法) -, 当时, 当时, 五、小结:(1)等比数列前项和的公式,及其注意点,(2)错项相消法。 再介绍两种推导等比数列求和公式的方法,(作机动) 法1:设 成GP, 由等比定理:即: 当时, 当时, 法2: 从而:当时(下略) 当时六、作业:P132-133 练习 , 习题35 ,