ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:792KB ,
资源ID:1150443      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1150443-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《首发》天津市2013届高三数学总复习之模块专题:27 导函数含参问题的基本讨论点(教师版) WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《首发》天津市2013届高三数学总复习之模块专题:27 导函数含参问题的基本讨论点(教师版) WORD版含答案.doc

1、导函数含参问题的基本讨论点1、求导后,考虑导函数为零是否有实根(或导函数的分子能否分解因式),从而引起讨论。例1:设,函数,试讨论函数的单调性。解:对于,分段进行研究。对于,对分类: 当时,函数在上是增函数; 当时, 令,得或(舍), 函数在上是减函数,在上是增函数;对于,对分类: 当时,函数在上是减函数; 当时,由,解得; 函数在上是减函数,在上是增函数。2、求导后,导函数为零有实根(或导函数的分子能分解因式),但不知导函数为零的实根是否落在定义域内,从而引起讨论。例2:已知是实数,函数。(1)求函数的单调区间;(2)设为在区间上的最小值。 写出的表达式; 求的取值范围,使得。解:(1)函数

2、的定义域为,由得。考虑是否落在导函数的定义域内,需对参数的取值分及两种情况进行讨论。当时,则在上恒成立,所以的单调递增区间为;当时,由,得;由,得;因此,当时,的单调递减区间为,单调递增区间为。(2)由第(1)问的结论可知:当时,在上单调递增,从而在上单调递增,所以;当时,在上单调递减,在上单调递增,所以:当,即时,在上单调递减,在上单调递增,所以;当,即时,在上单调递减,所以;综上所述,令。若,无解;若,由解得;若,由解得。综上所述,的取值范围为。3、求导后,导函数为零有实根(或导函数的分子能分解因式),导函数为零的实根也落在定义域内,但不知这些实根的大小关系,从而引起讨论。例3:已知函数,

3、其中。(1)当时,求曲线在点处的切线方程;(2)当时,求函数的单调区间与极值。解:(1)当时,曲线在点处的切线方程为;(2)由于,所以,由,得。这两个实根都在定义域内,但不知它们之间的大小。因此,需对参数的取值分和两种情况进行讨论。当时,则。易得在区间,内为减函数,在区间为增函数。故函数在处取得极小值;函数在处取得极大值。当时,则。易得在区间,内为增函数,在区间为减函数。故函数在处取得极小值;函数在处取得极大值。点评:以上三点即为含参数导数问题的三个基本讨论点,在求解有关含参数的导数问题时,可按上述三点的顺序对参数进行讨论。因此,对含参数的导数问题的讨论,还是有一定的规律可循的。当然,在具体解

4、题中,可能要讨论其中的两点或三点,这时的讨论就更复杂一些了,需要灵活把握。例4:设函数,其中,求函数的极值点。解:由题意可得的定义域为,的分母在定义域上恒为正,方程是否有实根,需要对参数的取值进行讨论。 当,即时,方程无实根或只有唯一根,所以在上恒成立,则在上恒成立,所以函数在上单调递增,从而函数在上无极值点。 当,即时,方程,即有两个不相等的实根:。这两个根是否都在定义域内呢?又需要对参数的取值分情况作如下讨论: 当时,所以。此时,与随的变化情况如下表:由此表可知:当时,有唯一极小值点。 当时,所以。此时,与随的变化情况如下表:由此表可知:当时,有一个极大值点和一个极小值点。综上所述: 当时

5、,有唯一极小值点;当时,有一个极大值点和一个极小值点; 当时,无极值点。点评:从以上诸例不难看出,在对含参数的导数问题的讨论时,只要把握以上三个基本讨论点,那么讨论就有了方向和切入点,即使问题较为复杂,讨论起来也会得心应手、层次分明,从而使问题迎刃而解。练习1:已知函数,其中常数,是奇函数。(1)求的表达式;(2)讨论的单调性,并求在区间上的最大值和最小值。练习2:已知函数。(I)当时,求曲线在点处的切线方程;(2)当时,讨论的单调性。解:(1)当时,所以因此,曲线在点处的切线方程为;(2)因为,所以,令当所以,当,函数单调递减;当时,此时单调递;当,即,解得当时,恒成立,此时,函数在上单调递减;当时,单调递减;时,单调递增;,此时,函数单调递减;当时,由于,时,此时,函数单调递减;时,此时,函数单调递增。综上所述:当时,函数在上单调递减,函数在上单调递增;当时,函数在上单调递减;当时,函数在上单调递减,在上单调递增,函数上单调递减。练习3:已知函数。(1)当时,讨论的单调性;(2)设,当时,若对任意,存在,使不等式成立,求实数的取值范围。解析:审题要津与解法研究。

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3