1、14.2充要条件内容标准学科素养1.理解充要条件的含义数学抽象逻辑推理2.会证明充要条件的关系.授课提示:对应学生用书第13页教材提炼知识点充要条件若两个三角形的两角和其中一角所对的边分别相等,则这两个三角形全等;原命题与逆命题的真假如何? 知识梳理充要条件如果“若p,则q”和它的逆命题“若q,则p”均是真命题,即既有pq,又有qp,就记作pq.此时,p既是q的充分条件,也是q的必要条件,我们说p是q的充分必要条件,简称为充要条件(sufficient and necessary condition)显然,如果p是q的充要条件,那么q也是p的充要条件概括地说,如果pq,那么p与q互为充要条件自
2、主检测1已知集合A1,a,B1,2,3,则“a3”是“AB”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件答案:A2“ab0”是“a0”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件答案:B3p:ab0,q:a2b20.则p是q的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件答案:B4p:|a|b|0,q:a2b20.则p是q的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件答案:C授课提示:对应学生用书第13页探究一充要条件的判断例1已知实系数一元二次方程ax2bxc0(a0),在下列各结论中正确的为(
3、)b24ac0是这个方程有实根的充分条件;b24ac0是这个方程有实根的必要条件;b24ac0是这个方程有实根的充要条件;b24ac0是这个方程有实根的充分条件ABC D解析首先我们应搞清楚b24ac0是实系数一元二次方程ax2bxc0(a0)有实根的充要条件利用该结论可知:上述是正确的同时当b24ac0时,方程有两相等的实根,故也是正确的答案D当p是q的充要条件正确时,p是q的充分条件及p是q的必要条件将都是正确的,故上述结论正确时,结论也正确应该指出的是:p是q的充分条件包含了两种可能:p是q的充分不必要条件与p是q的充要条件;同样,p是q的必要条件也包含了两种可能:p是q的必要不充分条件
4、与p是q的充要条件其实结论可进一步明确成:b24ac0是这个方程有实根的充分不必要条件给出下列各组条件:(1)p:ab0,q:a2b20;(2)p:xy0,q:|x|y|xy|;(3)p:m0,q:方程x2xm0有实根;(4)p:|x1|2,q:x1.其中p是q的充要条件的有()A1组B2组C3组 D4组解析:对(1),ab0指其中至少有一个为零,而a2b20指两个都为零,因此qp,但pq,p是q的必要不充分条件;对(2),|xy|x|y|(|xy|)2(|x|y|)2x22xyy2x22|xy|y2xy|xy|xy0,所以p是q的充要条件;对(3),方程x2xm0有实根的充要条件是14m0,
5、m,所以pq但qp,p是q的充分不必要条件;对(4),|x1|2x3或x1,所以pq但qp,所以p是q的必要不充分条件综上可知选A.答案:A探究二证明充要条件例2教材P22例4拓展已知O的半径为r,圆心O到点P的距离为d.求证dr是点P在O上的充要条件证明(充分性)根据圆的定义,当dr,P在圆外dr时,P在圆内故当dr时,点P在圆上必要性:若P在O上,则满足P到O的距离dr.证明充要条件,即证明条件的充分性和必要性证明充要性时一定要注意分类讨论,要搞清它的叙述格式,避免在论证时将充分性错当必要性证,而又将必要性错当充分性证求证:关于x的方程ax2bxc0有一个根为1的充要条件是abc0.证明:
6、必要性:方程ax2bxc0有一个根为1,x1满足方程ax2bxc0,a12b1c0,即abc0.充分性:abc0,cab.代入方程ax2bxc0中可得ax2bxab0.即(x1)(axab)0.故方程ax2bxc0有一个根为1.探究三利用充要条件求参数例3求方程ax22x10至少有一个负的实数根的充要条件解析当a0时,方程为2x10,x为一负根当a0时,44a0,且x1x20,x1x20,为一正根、一负根当a0时,得0a1.综上:a1.充要条件是一种等价转化,解决问题的关键就是找清原问题的充要条件函数yx22xa的图象与x轴无交点的充要条件是_解析:44a0,a1.答案:a1授课提示:对应学生
7、用书第14页一、识得庐山真面目转化与化归思想的应用数学中的转化比比皆是,如未知向已知转化,复杂问题向简单问题转化,新知识向旧知识转化,命题之间的转化,数与形的转化,转化的唯一原则就是“等价”,而“等价”就是“寻找充要条件”的关系典例设Ax|1x3,Bx|1xm1,xR,若xB成立的一个充分不必要条件是xA,则实数m的取值范围是_解析因为Ax|1x3,xB成立的一个充分不必要条件是xA,所以AB,所以m13,即m2.答案m2二、转化不等价致错典例设集合Ax|2x6,Bx|2mxm3,若BA,则实数m的取值范围是_解析当B时,则有解得1m3;当B时,2mm3,解得m3.综合,得m1,故实数m的取值范围是m|m1答案m|m1纠错心得此题求解时只求了一种情况,当B时,1m3,而实际与BA等价的有B与B两种情况.