1、第一章 数 列2等差数列2.1等差数列第2课时等差数列的性质A组学业达标1(2019舒兰市模拟)如果在等差数列an中,a3a4a512,那么a1a7等于()A4 B6C8 D12解析:在等差数列an中,a3a4a512,可得a1a7a3a52a4,即3a412,可得a44,所以a1a78.故选C.答案:C2设数列an、bn都是等差数列,且a125,b175,a2b2100,则a37b37等于()A0 B37C100 D37解析:an与bn为等差数列,anbn为等差数列又a1b1100,a2b2100,anbn的首项为a1b1,公差为1001000,a37b37(a1b1)(371)d100.故
2、选C.答案:C3等差数列an中,a13a8a15120,则2a9a10的值是()A20 B22 C24 D8解析:a13a8a155a8120,a824,而2a9a10a10a8a10a824.故选C.答案:C4(2019皇姑区模拟)数列an中,a11,a22,且数列是等差数列,则a3等于()A. B3 C5 D2 007解析:因为a11,a22,且数列是等差数列,所以,即,解得a35,故选C.答案:C5(2019大理州模拟)莱因德纸草书(Rhind Papyrus)是世界上最古老的数学著作之一,书中有这样一道题:把120个面包分成5份,使每份的面包数成等差数列,且较多的三份之和恰好是较少的两
3、份之和的7倍,则最少的那份有()个面包()A4 B3C2 D1解析:设五个人所分得的面包为a2d,ad,a,ad,a2d,(其中d0),则有(a2d)(ad)a(ad)(a2d)5a120,a24.由aada2d7(a2dad),得3a3d7(2a3d),24d11a,d11.最少的一份为a2d24222.故选C.答案:C6已知等差数列an中,a3,a10是方程x23x50的两根,则a5a6a7a8_解析:由条件知,a3a103,又因为在等差数列中,a3a10a5a8a6a7,所以a5a6a7a82(a3a10)6.答案:67在等差数列an中,已知a3a810,则3a5a7_解析:法一:a3a
4、82a19d10,3a5a74a118d2(2a19d)21020.法二:a3a82a35d10,3a5a74a310d2(2a35d)21020.答案:208若xy,两个数列x,a1,a2,a3,y和x,b1,b2,b3,b4,y都是等差数列,则_解析:设两个等差数列的公差分别为d1,d2.则yx4d15d2,又a2a1d1,b4b3d2,所以.答案:9已知f(x)x22x3,等差数列an中,a1f(x1),a2,a3f(x)求:(1)x的值;(2)通项公式an.解析:(1)由f(x)x22x3,得a1f(x1)(x1)22(x1)3x24x,a3x22x3,又因为a1,a2,a3成等差数列
5、,所以2a2a1a3,即3x24xx22x3,解得x0,或x3.(2)当x0时,a10,da2a1,此时ana1(n1)d(n1);当x3时,a13,da2a1,此时ana1(n1)d(n3)10三个数成等差数列,其和为9,前两项之积为后一项的6倍,求这三个数解析:设三个数分别为a,ad,a2d,由题意得:aada2d9,a(ad)6(a2d),解得:a4,d1,则这三个数分别为4,3,2.B组能力提升11(2019商丘市模拟)若数列an为等差数列,且a1a7a134,则sin(a2a12)的值()A B. C10 D5解析:数列an为等差数列,且a1a7a134,可得a7;a2a12,sin
6、(a2a12)sin,故选B.答案:B12已知正项数列an中,a11,a22,2aaa,则a6的值是()A8 B4 C16 D2解析:2aaa,a11,a22,a1,a4,aa3,数列a是以1为首项,以3为公差的等差数列,由等差数列的通项公式可得a13(n1)3n2,a16.an0,a64,故选B.答案:B13若三个数成等差数列,它们的和为9,平方和为59,则这三个数的积为_解析:设这三个数为ad,a,ad,则解得或这三个数为1,3,7或7,3,1.这三个数的积为21.答案:2114在等差数列an中,a5a64,则log2(2a12a22a10)_解析:在等差数列an中,a5a64,所以a1a
7、10a2a9a3a8a4a7a5a64,所以a1a2a10(a1a10)(a2a9)(a3a8)(a4a7)(a5a6)5(a5a6)20,则log2(2a12a22a10)log22a1a2a10a1a2a1020.答案:2015首项为a1,公差d为正整数的等差数列an满足下列两个条件:(1)a3a5a793;(2)满足an100的n的最小值是15,试求公差d和首项a1的值解析:因为a3a5a793,所以3a593,所以a531,所以ana5(n5)d100,所以n5.因为n的最小值是15,所以14515,所以6d7,又d为正整数,所以d7,a1a54d3.16已知数列an是等差数列,且a1a2a312,a816.(1)求数列an的通项公式;(2)若从数列an中,依次取出第2项,第4项,第6项,第2n项,按原来顺序组成一个新数列bn,试求出数列bn的通项公式解析:(1)设等差数列的公差为d.因为a1a2a312.所以a24,因为a8a2(82)d,所以1646d,所以d2,所以ana2(n2)d4(n2)22n.故an2n.(2)a24,a48,a612,a816,a2n22n4n.当n1时,a2na2(n1)4n4(n1)4.所以数列bn是以4为首项,4为公差的等差数列所以bnb1(n1)d44(n1)4n.故bn4n.