收藏 分享(赏)

《创新设计》2015高考数学(浙江专用理科)二轮选修模块 专题2 第1讲(含最新原创题及解析) WORD版含解析.doc

上传人:高**** 文档编号:114422 上传时间:2024-05-25 格式:DOC 页数:5 大小:112.50KB
下载 相关 举报
《创新设计》2015高考数学(浙江专用理科)二轮选修模块 专题2 第1讲(含最新原创题及解析) WORD版含解析.doc_第1页
第1页 / 共5页
《创新设计》2015高考数学(浙江专用理科)二轮选修模块 专题2 第1讲(含最新原创题及解析) WORD版含解析.doc_第2页
第2页 / 共5页
《创新设计》2015高考数学(浙江专用理科)二轮选修模块 专题2 第1讲(含最新原创题及解析) WORD版含解析.doc_第3页
第3页 / 共5页
《创新设计》2015高考数学(浙江专用理科)二轮选修模块 专题2 第1讲(含最新原创题及解析) WORD版含解析.doc_第4页
第4页 / 共5页
《创新设计》2015高考数学(浙江专用理科)二轮选修模块 专题2 第1讲(含最新原创题及解析) WORD版含解析.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、重点难点突破(选修模块)专题二计数原理、概率第1讲计数原理(建议用时:45分钟)一、选择题1(13x)5的展开式中x3的系数为()A270B90C90D270解析(13x)5的展开式通项为Tr1C(3)rxr(0r5,rN),当r3时,该项为T4C(3)3x3270x3,故可得x3的系数为270.答案A2(2013新课标全国卷)已知(1ax)(1x)5的展开式中x2的系数为5,则a等于()A4B3C2D1解析(1ax)(1x)5中含x2的项为:(CCa)x2,即CCa5,即105a5,解得a1.答案D3(2014济南模拟)如图所示,使电路接通,开关不同的开闭方式有()A11种B20种C21种D

2、12种解析当第一组开关有一个接通时,电路接通为C(CCC)14种方式;当第一组有两个接通时,电路接通有C(CCC)7种方式所以共有14721种方式,故选C.答案C4(2014长春一模)高三某班6名同学站成一排照相,同学甲、乙不能相邻,并且甲在乙的右边,则不同的排法种数共有()A120B240C360D480解析先将其他4名同学排好有A种方法,然后将甲、乙两名同学插空,又甲、乙两人顺序一定且不相邻,有C种方法,所以共有AC240种排法答案B5(2014丽水模拟)某中学从4名男生和3名女生中推荐4人参加某高校自主招生考试,若这4人中必须既有男生又有女生,则不同的选法共有()A140种B120种C3

3、5种D34种解析从7人中选4人共有C35种方法,又4名全是男生的选法有C1种故选4人既有男生又有女生的选法种数为35134.答案D6(2014金华调研)若(12x)5a0a1xa2x2a3x3a4x4a5x5,则a0a1a3a5的值为()A122B123C243D244解析在已知等式中分别取x0、x1与x1,得a01,a0a1a2a3a4a535,a0a1a2a3a4a51,因此有2(a1a3a5)351244,a1a3a5122,a0a1a3a5123,故选B.答案B7(2014郑州质检)在二项式n的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为()A32B32C0D1解析依题

4、意得所有二项式系数的和为2n32,解得n5.因此,该二项展开式中的各项系数的和等于50,选C.答案C8设aZ,且0a13,若512 012a能被13整除,则a的值为()A0B1C11D12解析化51为521,用二项式定理展开求解512 012a(521)2 012aC522 012C522 011(1)1C52(1)2 011C(1)2 012a.因为52能被13整除,所以只需C(1)2 012a能被13整除,即a1能被13整除,所以a12.答案D9(2014四川卷)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A192种B216种C240种D288种解析根据

5、甲、乙的位置要求分类解决,分两类第一类:甲在左端,有A54321120(种)方法;第二类:乙在最左端,有4A4432196(种)方法所以共有12096216(种)方法答案B10某单位安排7位员工在10月1日至7日值班,每天安排1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有()A504种B960种C1 008种D1 108种解析由题意得不同的安排方案共有A(A2AA)1 008(种)答案C二、填空题11(2013安徽卷)若8的展开式中,x4的系数为7,则实数a_.解析Tr1Cx8rrarCx8r,由8r4得r3,由已知条件a3C

6、7,则a3,a.答案12在24的展开式中,x的幂指数是整数的项共有_项解析Tr1C(x)24r(x)rCx12(0r24)r可取值为0,6,12,18,24,符合要求的项共有5项答案513若将函数f(x)x5表示为f(x)a0a1(1x)a2(1x2)a5(1x)5,其中a0,a1,a2,a5为实数,则a3_.解析法一将f(x)x5进行转化,利用二项式定理求解f(x)x5(1x1)5,它的通项为Tr1C(1x)5r(1)r,T3C(1x)3(1)210(1x)3,a310.法二不妨设1xt,则xt1,因此有(t1)5a0a1ta2t2a3t3a4t4a5t5,则a3C(1)210.答案1014

7、某班级有一个7人小组,现任选其中3人相互调整座位,其余4人座位不变,则不同的调整方案的种数为_解析分两步:第一步先选3个人即C35.第二步3个人相互调整座位,有2种方法35270.答案7015(2014潍坊模拟)某工厂将甲、乙等五名新招聘员工分配到三个不同的车间,每个车间至少分配一名员工,且甲、乙两名员工必须分到同一个车间,则不同分法的种数为_解析若甲、乙分到的车间不再分人,则分法有CAC18种;若甲、乙分到的车间再分一人,则分法有3AC18种所以满足题意的分法共有181836种答案3616(2014温州适应性测试)将9个相同的小球放入3个不同的盒子,要求每个盒子中至少有1个小球,且每个盒子中

8、的小球个数都不同,则共有不同放法_种解析对这3个盒子中所放的小球的个数情况进行分类计数:第一类,这3个盒子中所放的小球的个数是1,2,6,此类放法有A6种;第二类,这3个盒子中所放的小球的个数是1,3,5,此类放法有A6种;第三类,这3个盒子中所放的小球的个数是2,3,4,此类放法有A6种因此满足题意的放法共有66618种答案1817将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是_解析将5张参观券分成4堆,有2个联号有4种分法,每种分法再分给4人,各有A种分法,不同的分法种类共有4A96.答案9618将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴全运会的四个不同场馆服务,不同的分配方案有_种(用数字作答)解析先将6位志愿者分组,共有种方法;再把各组分到不同场馆,共有A种方法由乘法原理知,不同的分配方案共有A1 080(种)答案1 080

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3