ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:388KB ,
资源ID:1144203      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1144203-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021-2022高中数学人教版必修2教案:2-3-1 直线与平面垂直的判定 (系列二) WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2021-2022高中数学人教版必修2教案:2-3-1 直线与平面垂直的判定 (系列二) WORD版含答案.doc

1、2.3 直线、平面垂直的判定及其性质2.3.1 直线与平面垂直的判定一、教材分析 空间中直线与平面之间的位置关系中,垂直是一种非常重要的位置关系,它不仅应用较多,而且是空间问题平面化的典范.空间中直线与平面的垂直问题是连接线线垂直和面面垂直的桥梁和纽带,可以说线面垂直是立体几何的核心.本节重点是直线与平面垂直的判定定理的应用.二、教学目标1知识与技能(1)使学生掌握直线和平面垂直的定义及判定定理;(2)使学生掌握直线和平面所成的角求法;(3)培养学生的几何直观能力,使他们在直观感知,操作确认的基础上学会归纳、概括结论.2过程与方法(1)通过教学活动,使学生了解,感受直线和平面垂直的定义的形成过

2、程;(2)探究判定直线与平面垂直的方法.3情态、态度与价值观培养学生学会从“感性认识”到“理性认识”过程中获取新知.三、教学重点与难点教学重点:直线与平面垂直的判定.教学难点:灵活应用直线与平面垂直判定定理解决问题.四、课时安排 1课时五、教学设计(一)导入新课思路1.(情境导入) 日常生活中,我们对直线与平面垂直有很多感性认识,比如,旗杆与地面的位置关系,大桥的桥柱与水面的位置关系等,都给我们以直线与平面垂直的印象. 在阳光下观察直立于地面的旗杆及它在地面的影子.随着时间的变化,尽管影子BC的位置在移动,但是旗杆AB所在直线始终与BC所在直线垂直.也就是说,旗杆AB所在直线与地面内任意一条不

3、过点B的直线BC也是垂直的.思路2.(事例导入) 如果一条直线垂直于一个平面的无数条直线,那么这条直线是否与这个平面垂直?举例说明. 如图1,直线AC1与直线BD、EF、GH等无数条直线垂直,但直线AC1与平面ABCD不垂直.图1(二)推进新课、新知探究、提出问题探究直线与平面垂直的定义和画法.探究直线与平面垂直的判定定理.用三种语言描述直线与平面垂直的判定定理.探究斜线在平面内的射影,讨论直线与平面所成的角.探究点到平面的距离.活动:问题引导学生结合事例观察探究.问题引导学生结合事例实验探究.问题引导学生进行语言转换.问题引导学生思考其合理性.问题引导学生回忆点到直线的距离得出点到平面的距离

4、.讨论结果:直线与平面垂直的定义和画法:教师演示实例并指出书脊(想象成一条直线)、各书页与桌面的交线,由于书脊和书页底边(即与桌面接触的一边)垂直,得出书脊和桌面上所有直线都垂直,书脊和桌面的位置关系给了我们直线和平面垂直的形象.从而引入概念:一条直线和平面内的任何一条直线都垂直,我们说这条直线和这个平面互相垂直,直线叫做平面的垂线,平面叫做直线的垂面.过一点有且只有一条直线和一个平面垂直;过一点有且只有一个平面和一条直线垂直.平面的垂线和平面一定相交,交点叫做垂足.直线和平面垂直的画法及表示如下:如图2,表示方法为:a. 图2 图3如图3,请同学们准备一块三角形的纸片,我们一起做一个实验:过

5、ABC的顶点A翻折纸片,得折痕AD,将翻折后的纸片竖起放置在桌面上(BD,DC与桌面接触).(1)折痕AD与桌面垂直吗?(2)如何翻折才能使折痕AD与桌面所在的平面垂直?容易发现,当且仅当折痕AD是BC边上的高时,AD所在直线与桌面所在的平面垂直.如图4.(1) (2)图4 所以,当折痕AD垂直平面内的一条直线时,折痕AD与平面不垂直,当折痕AD垂直平面内的两条直线时,折痕AD与平面垂直.直线和平面垂直的判定定理用文字语言表示为: 如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面. 直线和平面垂直的判定定理用符号语言表示为:l.直线和平面垂直的判定定理用图形语言表示为:

6、如图5, 图5 图6斜线在平面内的射影.斜线:一条直线和一个平面相交,但不和这个平面垂直时,这条直线就叫做这个平面的斜线.斜足:斜线和平面的交点.斜线在平面内的射影:从斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个平面内的射影. 直线与平面相交,直线与平面的相互位置类同于两条相交直线,也需要用角来表示,但过交点在平面内可以作很多条直线.与平面相交的直线l与平面内的线a、b所成的角是不相等的.为了定义的确定性,我们必须找到一些角中有确定值的,又能准确描述其位置的一个角,这就是由斜线与其在平面内的射影所成的锐角作为直线和平面所成的角. 平面的一条斜线和它在这个平面内的射影所成的

7、锐角,叫做这条直线和这个平面所成的角. 特别地:如果一条直线垂直于平面,我们说它们所成的角为直角. 一条直线和平面平行或在平面内,我们说它们所成的角为0.如图6,l是平面的一条斜线,点O是斜足,A是l上任意一点,AB是的垂线,点B是垂足,所以直线OB(记作l)是l在内的射影,AOB(记作)是l与所成的角. 直线和平面所成的角是一个非常重要的概念,在实际中有着广泛的应用,如发射炮弹时,当炮筒和地面所成的角为多少度时,才能准确地命中目标,也即射程为多远?又如铅球运动员在投掷时,以多大的角度投掷,投出的距离最远?点到平面的距离:经过一点向平面引垂线,垂足叫做这点在这个平面内的射影,点在平面内的射影还

8、是一个点.垂线段:上述的点与垂足间的线段叫做这点到这个平面的垂线段.点到平面的距离:垂线段的长叫做点到平面的距离.(三)应用示例思路1例1 如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于同一个平面.解:已知ab,a.求证:b.图7证明:如图7,在平面内作两条相交直线m、n,设mn=A.*变式训练 如图8,已知点P为平面ABC外一点,PABC,PCAB,求证:PBAC.图8证明:过P作PO平面ABC于O,连接OA、OB、OC.PO平面ABC,BC平面ABC,POBC.又PABC,BC平面PAO.又OA平面PAO,BCOA.同理,可证ABOC.O是ABC的垂心.OBAC.可证POAC.

9、AC平面PBO.又PB平面PBO,PBAC.点评:欲证线面垂直需要转化为证明线线垂直,欲证线线垂直往往转化为线面垂直.用符号语言证明问题显得清晰、简洁.例2 如图9,在正方体ABCDA1B1C1D1中,求直线A1B和平面A1B1CD所成的角.图9活动:先让学生思考或讨论后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.解:连接BC1交B1C于点O,连接A1O.设正方体的棱长为a,因为A1B1B1C1,A1B1B1B,所以A1B1平面BCC1B1.所以A1B1BC1.又因为BC1B1C,所以BC1平面A1B1CD.所以A1O为斜线A1B在平面A1B1

10、CD内的射影,BA1O为直线A1B与平面A1B1CD所成的角.在RtA1BO中,A1B=,BO=,所以BO=,BA1O=30.因此,直线A1B和平面A1B1CD所成的角为30.变式训练 如图10,四面体ABCD的棱长都相等,Q是AD的中点,求CQ与平面DBC所成的角的正弦值.图10解:过A作AO面BCD,连接OD、OB、OC,则可证O是BCD的中心,作QPOD,QPAO,QP面BCD.连接CP,则QCP即为所求的角.设四面体的棱长为a,在正ACD中,Q是AD的中点,CQ=.QPAO,Q是AD的中点,QP=,得sinQCP=.点评:求直线与平面所成的角,是本节的又一重点,作线面角的关键是找出平面

11、的垂线.思路2例1 (2007山东高考,文20)如图11(1),在直四棱柱ABCDA1B1C1D1中,已知DC=DD1=2AD=2AB,ADDC,ABDC.(1)(1)求证:D1CAC1;(2)设E是DC上一点,试确定E的位置,使D1E平面A1BD,并说明理由.(1)证明:在直四棱柱ABCDA1B1C1D1中,连接C1D,如图11(2).(2)DC=DD1,四边形DCC1D1是正方形.DC1D1C.又ADDC,ADDD1,DCDD1=D,AD平面DCC1D1,D1C平面DCC1D1.ADD1C.AD、DC1平面ADC1,且ADDC1=D,D1C平面ADC1.又AC1平面ADC1,D1CAC1.

12、(2)解:连接AD1、AE,如图11(3).(3)图11设AD1A1D=M,BDAE=N,连接MN,平面AD1E平面A1BD=MN,要使D1E平面A1BD,需使MND1E,又M是AD1的中点,N是AE的中点.又易知ABNEDN,AB=DE,即E是DC的中点.综上所述,当E是DC的中点时,可使D1E平面A1BD.变式训练 如图12,在正方体ABCDA1B1C1D1,G为CC1的中点,O为底面ABCD的中心.求证:A1O平面GBD.图12证明:BDA1O.又A1O2=A1A2+AO2=a2+()2=,OG2=OC2+CG2=()2+()2=,A1G2=A1C12+C1G2=(a)2+()2=,A1

13、O2+OG2=A1G2.A1OOG.又BDOG=O,A1O平面GBD.点评:判断线面垂直往往转化为线线垂直,勾股定理也是证明线线垂直的重要方法.例2 如图13,ABCD为正方形,过A作线段SA面ABCD,又过A作与SC垂直的平面交SB、SC、SD于E、K、H,求证:E、H分别是点A在直线SB和SD上的射影.图13证明:SABC,又ABBC,SAAB=A,BC平面SAB.BCAE.SC平面AHKE,SCAE.又BCSC=C,AE平面SBC.AESB,即E为A在SB上的射影.同理可证,H是点A在SD上的射影.变式训练 已知RtABC的斜边BC在平面内,两直角边AB、AC与都斜交,点A在平面内的射影

14、是点A,求证:BAC是钝角.证明:如图14,过A作ADBC于D,连接AD,图14AA,BC,AABC.BCAD.tanBAD=tanBAD=,tanCAD=tanCAD=,BADBAD,CADCAD.BACBAC,即BAC是钝角.(四)知能训练 如图15,已知a、b是两条相互垂直的异面直线,线段AB与两异面直线a、b垂直且相交,线段AB的长为定值m,定长为n(nm)的线段PQ的两个端点分别在a、b上移动,M、N分别是AB、PQ的中点.图15求证:(1)ABMN;(2)MN的长是定值.证明:(1)取PB中点H,连接HN,则HNb.又ABb,ABHN.同理,ABMH.AB平面MNH.ABMN.(2

15、)b平面PAB.bPB.在RtPBQ中,BQ2=PQ2-PB2=n2-PB2, 在RtPBA中,PA2=PB2-AB2=PB2-m2, 两式相加PA2+BQ2=n2-m2,ab,MHN=90.MN=(定值).(五)拓展提升1.如图16,已知在侧棱垂直于底面三棱柱ABCA1B1C1中,AC=3,AB=5,BC=4,AA1=4,点D是AB的中点.图16(1)求证:ACBC1;(2)求证:AC1平面CDB1;(1)证明:在ABC中,AC=3,AB=5,BC=4,ABC为直角三角形.ACCB.又CC1面ABC,AC面ABC,ACCC1.AC面BCC1B1.又BC1面BCC1B1,ACBC1.(2)证明:连接B1C交BC1于E,则E为BC1的中点,连接DE,则在ABC1中,DEAC1.又DE面CDB1,则AC1面B1CD.(六)课堂小结知识总结:利用面面垂直的性质定理找出平面的垂线,然后解决证明垂直问题、平行问题、求角问题、求距离问题等.思想方法总结:转化思想,即把面面关系转化为线面关系,把空间问题转化为平面问题.(七)作业 课本习题2.2 B组3、4.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3