1、抛 物 线 习 题 课教学目标:熟练掌握抛物线的性质及其求法。重点:抛物线的求法难点:抛物线的证明教学过程:1 复习回顾简单回顾抛物线的四种方程及其性质2 练习:选择题:1,以F(0,1)为焦点,以L:y = - 1为准线的拋物线的方程式为何? (A) y2 = 4x(B) y2 = - 4x(C) x2 = 4y(D) x2 = - 4y(E) y = x2 答案:C2.下列何者为拋物线y = ax2 + bx + c的顶点在第四象限的充分条件?(A) a 0,b 0,c 0(B) a 0,b 0,c 0,b 0,c 0(D) a 0,b 0,b2 - 4ac 0答案:C3.设y = y =
2、 ax2 + bx + c的图形如右,下列何者正确? 3.设y = y = ax2 + bx + c的图形如右,下列何者正确? a 0(C) c 0(E) b2 - 4ac 0 (A) a 0(C) c 0(E) b2 - 4ac 0 答案:B,D,E填空题:1.与直线2x + 3y + 2 = 0及点(1,- 1)等距离的点的轨迹方程式为9x2 - 12xy + 4y2 - 34x + 14y + 22 = 0 2.与y2 - 4x + 6y + 5 = 0共轴、共焦点且过(3,1)之拋物线方程为(y + 3)2 = - 16(x - 4)或(y + 3)2 = 4(x + 1) 3.拋物线
3、C1:y2 = 4x,椭圆C2:bx2 + 9y2 = 9b有共同之焦点F1,P为C1,C2位于x轴上方之交点,F2为C2之另一焦点,且PF2F1 = a,PF1F2 = b,求cosacosb = 证明题1.设线段PQ为拋物线C 的焦点弦(过焦点的弦),L为C的准线,F为焦点,如图所示,过P,Q分别作L的垂线,令垂足依序为A,B,且M为AB的中点,试证:(1)MPMQ(2)MFPQ证明:(1) F为拋物线C 的焦点,且弦PQ过焦点F,L为准线,M为AB中点, PAL,QBL,所以PA=PF,QB=QF,因此AP+BQ=PF+QF=PQ。过M作MN/AP,交PQ于N,则MN=1/2 (AP+B
4、Q)=PQ,又N为PQ中点,所以MN=1/2 PQ=PN=QN,因此MPN =PMN,QMN =MQN所以PMQ =PMN +QMN = 90,即MPMQ(2)如图,1 =2,3 =4,又1 +2 +APF +3 +4 +BQF = 360又APF +BQF = 180,所以,1 +2 +3 +4 = 2(2 +4) = 180因此,2 +4 = 90,可得AFB = 90,M为直角三角形AFB的斜边中点所以AM=BM=MF,又AP=FP,MP=MP,所以 AMP FMP因此PFM =PAM = 90,即PFMF,亦即MFPQ解答题:1.两拋物线y = x2 - 3x + 2,y = 2x2
5、- 5x + a相交于两相异点P,Q,(1)求a的范围(2)求PQ的方程式(3)若PQ= 4,则a =?(1) 2x2 - 5x + a = x2 - 3x + 2有两解x2 - 2x + (a - 2) = 0有相异两实根判别式 = ( - 2)2 - 4(a - 2) 0a 3 2 - y = - x + 4 - aPQ:x + y - 4 + a = 0(2)(3)设x2 - 2x + (a - 2) = 0两根为a,b,则可令P(a,a2 - 3a + 2),Q(b,b2 - 3b + 2)PQ2 = 2 = (a - b)21 + (a + b - 3)2因故PQ2= (a - b)21 + (2 - 3)2 = 2(a - b)2 = 2(a + b)2 - 4ab= 24 - 4(a - 2) = 24 - 8a,24 - 8a = 16a = 13.设动圆C与圆x2 + y2 - 8x + 12 = 0及直线x + 2 = 0相切,则动圆C之圆心轨迹方程式为何?解:x2+y2-8x+12=0(x-4)2+y2= 4,圆心A(4,0),半径2,令动圆C之圆心P(x,y)外切时,d(P,L) =PA-2|x+2|= -2y2=16x内切时,d(P,L) =PA+2|x+2|= +2y2=8x-16