ImageVerifierCode 换一换
格式:DOCX , 页数:6 ,大小:26.59KB ,
资源ID:1139705      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1139705-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020-2021学年高中数学人教A版选修1-1习题:第三章 习题课——导数运算及几何意义的综合问题 WORD版含解析.docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2020-2021学年高中数学人教A版选修1-1习题:第三章 习题课——导数运算及几何意义的综合问题 WORD版含解析.docx

1、习题课导数运算及几何意义的综合问题课后篇巩固提升基础巩固1.已知奇函数f(x)满足f(-1)=1,则=()A.1B.-1C.2D.-2解析由f(x)为奇函数,得f(1)=-f(-1),所以=f(-1)=1,故选A.答案A2.若曲线f(x)=x3+x2+mx的切线中,只有一条与直线x+y-3=0垂直,则实数m的值等于()A.2B.0C.0或2D.3解析依题意,只有一条切线的斜率等于1,又f(x)=x2+2x+m,所以方程x2+2x+m=1只有一个实数根,于是=4-4(m-1)=0,解得m=2.答案A3.已知f(x)=+4x,则f(1)=()A.1B.4C.2D.-1解析因为f(x)=+4x,所以

2、f(x)=-+4.因此f(1)=-+4,解得f(1)=2.答案C4.经过点(3,0)的直线l与抛物线y=的两个交点处的切线相互垂直,则直线l的斜率k等于()A.-B.-C.D.-解析设直线l的斜率为k,则其方程为y=k(x-3),设直线l与抛物线的两个交点为A(x1,y1),B(x2,y2),由得x2-2kx+6k=0,所以x1x2=6k.又对y=求导有y=x,所以抛物线在A,B两点处的切线的斜率分别为x1,x2,于是有x1x2=6k=-1,所以k=-.答案A5.与直线2x-y+4=0平行的抛物线y=x2的切线方程是()A.2x-y+3=0B.2x-y-3=0C.2x-y+1=0D.2x-y-

3、1=0解析对函数求导得y=2x,设切点坐标为(x,y),因为切线与直线2x-y+4=0平行得斜率k=2x=2,即x=1,则切点坐标为(1,1),所以得切线方程为y-1=2(x-1),即2x-y-1=0,故选D.答案D6.给出定义:若函数f(x)在D上可导,即f(x)存在,且导函数f(x)在D上也可导,则称f(x)在D上存在二阶导函数,记f(x)=(f(x),若f(x)0在D上恒成立,则称f(x)在D上为凸函数,以下四个函数在上不是凸函数的是()A.f(x)=sin x+cos xB.f(x)=ln x-2xC.f(x)=-x3+2x-1D.f(x)=-xe-x解析若f(x)=sin x+cos

4、 x,则f(x)=-sin x-cos x,在上,恒有f(x)0;若f(x)=ln x-2x,则f(x)=-,在上,恒有f(x)0;若f(x)=-x3+2x-1,则f(x)=-6x,在上,恒有f(x)0,故选D.答案D7.已知函数f(x)的图象在x=2处的切线方程为2x+y-3=0,则f(2)+f(2)=.解析切线2x+y-3=0的斜率为-2,所以f(2)=-2.又切点在切线上,所以22+y-3=0.因此y=f(2)=-1,故f(2)+f(2)=-1+(-2)=-3.答案-38.已知a=,b=,c=,d=,e=,则a,b,c,d,e中有相等关系的是.解析容易推得c=d,又在e=中,若令x-x0

5、=x,则该式可化为e=,所以a=e,因此具有相等关系的是c=d,a=e.答案c=d,a=e9.曲线y=3(x2+x)ex在点(0,0)处的切线方程为.解析由题意可知y=3(2x+1)ex+3(x2+x)ex=3(x2+3x+1)ex,k=y|x=0=3.曲线y=3(x2+x)ex在点(0,0)处的切线方程为y=3x.答案y=3x10.已知曲线y=x2+1,问是否存在实数a,使得经过点(1,a)能够作出该曲线的两条切线?若存在,求出a的取值范围;若不存在,说明理由.解因为y=x2+1,所以y=2x.设切点为(t,t2+1),所以切线斜率为y|x=t=2t,于是切线方程为y-(t2+1)=2t(x

6、-t),将(1,a)代入,得a-(t2+1)=2t(1-t),即t2-2t+(a-1)=0.因为切线有两条,所以=(-2)2-4(a-1)0,解得a0)的导函数,且满足xf(x)+2f(x)=,f(1)=1,则f(x)的解析式为()A.f(x)=(x0)B.f(x)=ln x+1(x0)C.f(x)=+1(x0)D.f(x)=+1(x0)解析xf(x)+2f(x)=,x2f(x)+2xf(x)=.x2f(x)=x2f(x)+2xf(x),可设x2f(x)=(ln x+c),即f(x)=.又f(1)=1,c=1.f(x)=(x0).答案A3.曲线f(x)=sin 2x在点(0,0)处的切线方程为

7、.解析f(x)=sin 2x,f(x)=2cos 2x,当x=0时,f(0)=2,得切线的斜率为k=2,所以曲线在点(0,0)处的切线方程为y-0=2(x-0),即y=2x.答案2x-y=04.设曲线y=xn+1(nN*)在点(1,1)处的切线与x轴的交点的横坐标为xn,令an=lg xn,则a1+a2+a99的值为.解析y|x=1=n+1(nN*),曲线在点(1,1)处的切线为y-1=(n+1)(x-1)(nN*),令y=0,得x=xn=(nN*),an=lg(nN*),a1+a2+a99=lg+lg+lg=lg=lg=-2.答案-25.已知f(x)=(x-a)(x-b)(x-c)(abc)

8、,试证明方程f(x)=0必有两个实数根.证明法一:因为f(x)=(x-a)(x-b)(x-c)=(x-a)(x-b)(x-c),所以f(x)=(x-b)(x-c)+(x-a)(x-b)(x-c)=(x-b)(x-c)+(x-a)(x-c)+(x-a)(x-b).令g(x)=(x-a)(x-b)+(x-b)(x-c)+(x-a)(x-c),因为abc,所以有g(a)=(a-b)(a-c)0,g(b)=(b-a)(b-c)0,根据函数零点的性质知,函数g(x)在区间(b,a)和(c,b)内各有一个零点,故原方程有两个实根,且一个大于b,另一个小于b.法二:f(x)=(x-a)(x-b)(x-c)=

9、x3-(a+b+c)x2+(ab+bc+ac)x-abc,f(x)=3x2-2(a+b+c)x+(ab+bc+ac).=-2(a+b+c)2-43(ab+bc+ac)=4(a+b+c)2-3(ab+bc+ac)=4(a2+b2+c2-ab-bc-ac)=2(a2+b2-2ab)+(b2+c2-2bc)+(c2+a2-2ac)=2(a-b)2+(b-c)2+(a-c)2,abc,0恒成立.方程f(x)=0必有两个实数根.6.设函数f(x)=ax-,曲线f(x)在点(2,f(2)处的切线方程为7x-4y-12=0.(1)求f(x)的解析式;(2)证明:曲线y=f(x)在任一点处的切线与直线x=0和

10、直线y=x所围成的三角形面积为定值,并求此定值.(1)解方程7x-4y-12=0可化为y=x-3.当x=2时,y=.又f(x)=a+,于是解得故f(x)=x-.(2)证明设P(x0,y0)为曲线上任一点,由y=1+,知曲线在点P(x0,y0)处的切线方程为y-y0=(x-x0),即y-(x-x0).令x=0,得y=-,从而得切线与直线x=0的交点坐标为.令y=x,得y=x=2x0,从而得切线与直线y=x的交点坐标为(2x0,2x0).所以曲线在点P(x0,y0)处的切线与直线x=0,y=x所围成的三角形面积为|2x0|=6.故曲线y=f(x)在任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,此定值为6.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3