ImageVerifierCode 换一换
格式:DOC , 页数:19 ,大小:596KB ,
资源ID:113893      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-113893-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2018北师大版文科数学高考总复习教师用书:8-2空间图形的基本关系与公理 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2018北师大版文科数学高考总复习教师用书:8-2空间图形的基本关系与公理 WORD版含答案.doc

1、第2讲空间图形的基本关系与公理最新考纲1.理解空间直线、平面位置关系的定义;2.了解可以作为推理依据的公理和定理;3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题知 识 梳 理1空间图形的公理(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内(即直线在平面内)(2)公理2:经过不在同一条直线上的三点,有且只有一个平面(即可以确定一个平面)(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条通过这个点的公共直线(4)公理4:平行于同一条直线的两条直线平行推论1:经过一条直线和这条直线外一点,有且只有一个平面推论2:经过两条相交直线

2、,有且只有一个平面推论3:经过两条平行直线,有且只有一个平面(5)等角定理空间中,如果两个角的两条边分别对应平行,那么这两个角相等或互补2空间点、直线、平面之间的位置关系直线与直线直线与平面平面与平面平行关系图形语言符号语言aba相交关系图形语言符号语言abAaAl独有关系图形语言符号语言a,b是异面直线a3.异面直线所成的角(1)定义:过空间任意一点P分别引两条异面直线a,b的平行线l1,l2(al1,bl2),这两条相交直线所成的锐角(或直角)就是异面直线a,b所成的角(2)范围:.诊 断 自 测1判断正误(在括号内打“”或“”)精彩PPT展示(1)两个平面,有一个公共点A,就说,相交于过

3、A点的任意一条直线()(2)两两相交的三条直线最多可以确定三个平面()(3)如果两个平面有三个公共点,则这两个平面重合()(4)若直线a不平行于平面,且a,则内的所有直线与a异面()解析(1)如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线,故错误(3)如果两个平面有三个公共点,则这两个平面相交或重合,故错误(4)由于a不平行于平面,且a,则a与平面相交,故平面内有与a相交的直线,故错误答案(1)(2)(3)(4)2(必修2P52B1(2)改编)如图所示,在正方体ABCDA1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成的角的大小为()A30 B

4、45 C60 D90解析连接B1D1,D1C,则B1D1EF,故D1B1C为所求的角又B1D1B1CD1C,D1B1C60.答案C3.在下列命题中,不是公理的是()A平行于同一个平面的两个平面相互平行B过不在同一条直线上的三点,有且只有一个平面C如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线解析选项A是面面平行的性质定理,是由公理推证出来的答案A4(2016山东卷)已知直线a,b分别在两个不同的平面 ,内,则“直线a和直线b相交”是“平面和平面相交”的()A充分不必要条件 B必要不充分条件C充要条件

5、D既不充分也不必要条件解析由题意知a,b,若a,b相交,则a,b有公共点,从而,有公共点,可得出,相交;反之,若,相交,则a,b的位置关系可能为平行、相交或异面因此“直线a和直线b相交”是“平面和平面相交”的充分不必要条件答案A5若直线ab,且直线a平面,则直线b与平面的位置关系是_答案b与相交或b或b考点一空间图形的公理及应用【例1】 如图所示,在正方体ABCDA1B1C1D1中,E,F分别是AB,AA1的中点求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点证明(1)如图,连接EF,CD1,A1B.E,F分别是AB,AA1的中点,EFA1B.又A1BCD1,EFCD1,

6、E,C,D1,F四点共面(2)EFCD1,EFCD1,CE与D1F必相交,设交点为P,则由PCE,CE平面ABCD,得P平面ABCD.同理P平面ADD1A1.又平面ABCD平面ADD1A1DA,P直线DA.CE,D1F,DA三线共点规律方法(1)证明线共面或点共面的常用方法直接法,证明直线平行或相交,从而证明线共面纳入平面法,先确定一个平面,再证明有关点、线在此平面内辅助平面法,先证明有关的点、线确定平面,再证明其余元素确定平面,最后证明平面,重合(2)证明点共线问题的常用方法空间图形的公理法,一般转化为证明这些点是某两个平面的公共点,再根据空间图形的公理3证明这些点都在这两个平面的交线上纳入

7、直线法,选择其中两点确定一条直线,然后证明其余点也在该直线上【训练1】 如图所示,四边形ABEF和ABCD都是梯形,BC綊AD,BE綊FA,G,H分别为FA,FD的中点(1)证明:四边形BCHG是平行四边形;(2)C,D,F,E四点是否共面?为什么?(1)证明由已知FGGA,FHHD,可得GH綊AD.又BC綊AD,GH綊BC,四边形BCHG为平行四边形(2)解BE綊AF,G为FA的中点,BE綊FG,四边形BEFG为平行四边形,EFBG.由(1)知BG綊CH,EFCH,EF与CH共面又DFH,C,D,F,E四点共面考点二判断空间两直线的位置关系【例2】 (1)(2015广东卷)若直线l1和l2是

8、异面直线,l1在平面内,l2在平面内,l是平面与平面的交线,则下列命题正确的是()Al与l1,l2都不相交Bl与l1,l2都相交Cl至多与l1,l2中的一条相交Dl至少与l1,l2中的一条相交(2)(2017南昌一中月考)如图,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有_(填上所有正确答案的序号)解析(1)法一由于l与直线l1,l2分别共面,故直线l与l1,l2要么都不相交,要么至少与l1,l2中的一条相交若ll1,ll2,则l1l2,这与l1,l2是异面直线矛盾故l至少与l1,l2中的一条相交法二如图1,l1与l2是异面直线,l1与l平行,l2与

9、l相交,故A,B不正确;如图2,l1与l2是异面直线,l1,l2都与l相交,故C不正确(2)在图中,直线GHMN;在图中,G,H,N三点共面,但M面GHN,NGH,因此直线GH与MN异面;在图中,连接QM,GMHN,因此GH与MN共面;在图中,G,M,N共面,但H面GMN,GMN,因此GH与MN异面所以在图中GH与MN异面答案(1)D(2)规律方法(1)异面直线的判定方法反证法:先假设两条直线不是异面直线,即两条直线平行或相交,由假设出发,经过严格的推理,导出矛盾,从而否定假设,肯定两条直线异面定理:平面外一点A与平面内一点B的连线和平面内不经过点B的直线是异面直线(2)点、线、面位置关系的判

10、定,要注意几何模型的选取,常借助正方体为模型,以正方体为主线直观感知并认识空间点、线、面的位置关系【训练2】 (1)如图,在正方体ABCDA1B1C1D1中,M,N分别是BC1,CD1的中点,则下列判断错误的是()AMN与CC1垂直BMN与AC垂直CMN与BD平行DMN与A1B1平行(2)(2017西安调研)a,b,c表示不同的直线,M表示平面,给出四个命题:若aM,bM,则ab或a,b相交或a,b异面;若bM,ab,则aM;若ac,bc,则ab;若aM,bM,则ab.其中正确的为()A B C D解析(1)如图,连接C1D,在C1DB中,MNBD,故C正确;CC1平面ABCD,BD平面ABC

11、D,CC1BD,MNCC1,故A正确;ACBD,MNBD,MNAC,故B正确;A1B1与BD异面,MNBD,MN与A1B1不可能平行,故选项D错误(2)对于,当aM,bM时,则a与b平行、相交或异面,为真命题中,bM,ab,则aM或aM,为假命题命题中,a与b相交、平行或异面,为假命题由线面垂直的性质,命题为真命题,所以,为真命题答案(1)D(2)A考点三异面直线所成的角【例3】 (1)(2017合肥模拟)如图所示,在正三棱柱ABCA1B1C1中,D是AC的中点,AA1AB1,则异面直线AB1与BD所成的角为_(2)(2016全国卷)平面过正方体ABCDA1B1C1D1的顶点A,平面CB1D1

12、,平面ABCDm,平面ABB1A1n,则m,n所成角的正弦值为()A. B. C. D.解析(1)取A1C1的中点E,连接B1E,ED,AE,在RtAB1E中,AB1E为异面直线AB1与BD所成的角设AB1,则A1A,AB1,B1E,故AB1E60.(2)根据平面与平面平行的性质,将m,n所成的角转化为平面CB1D1与平面ABCD的交线及平面CB1D1与平面ABB1A1的交线所成的角设平面CB1D1平面ABCDm1.平面平面CB1D1,m1m.又平面ABCD平面A1B1C1D1,且平面CB1D1平面A1B1C1D1B1D1,B1D1m1,B1D1m.平面ABB1A1平面DCC1D1,且平面CB

13、1D1平面DCC1D1CD1,同理可证CD1n.因此直线m与n所成的角即直线B1D1与CD1所成的角在正方体ABCDA1B1C1D1中,CB1D1是正三角形,故直线B1D1与CD1所成角为60,其正弦值为.答案(1)60(2)A规律方法(1)求异面直线所成的角常用方法是平移法,平移方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移(2)求异面直线所成角的三个步骤作:通过作平行线,得到相交直线的夹角证:证明相交直线夹角为异面直线所成的角求:解三角形,求出作出的角,如果求出的角是锐角或直角,则它就是要求的角,如果求出的角是钝角,则它的补角才是要求的角

14、【训练3】 如图,在底面为正方形,侧棱垂直于底面的四棱柱ABCDA1B1C1D1中,AA12AB2,则异面直线A1B与AD1所成角的余弦值为()A. B.C. D.解析连接BC1,易证BC1AD1,则A1BC1即为异面直线A1B与AD1所成的角连接A1C1,由AB1,AA12,则A1C1,A1BBC1,在A1BC1中,由余弦定理得cosA1BC1.答案D思想方法1主要题型的解题方法(1)要证明“线共面”或“点共面”可先由部分直线或点确定一个平面,再证其余直线或点也在这个平面内(即“纳入法”)(2)要证明“点共线”可将线看作两个平面的交线,只要证明这些点都是这两个平面的公共点,根据公理3可知这些

15、点在交线上2判定空间两条直线是异面直线的方法(1)判定定理:平面外一点A与平面内一点B的连线和平面内不经过点B的直线是异面直线.(2)反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面3求两条异面直线所成角的大小,一般方法是通过平行移动直线,把异面问题转化为相交直线的夹角,体现了化归思想易错防范1异面直线易误解为“分别在两个不同平面内的两条直线为异面直线”,实质上两异面直线不能确定任何一个平面,因此异面直线既不平行,也不相交2直线与平面的位置关系在判断时最易忽视“线在面内”3两异面直线所成的角归结到一个三角形的内角时,容易忽视这个三角形的内角可能等于两异面直线所成的角,也可

16、能等于其补角基础巩固题组(建议用时:40分钟)一、选择题1(2015湖北卷)l1,l2表示空间中的两条直线,若p:l1,l2是异面直线;q:l1,l2不相交,则()Ap是q的充分条件,但不是q的必要条件Bp是q的必要条件,但不是q的充分条件Cp是q的充分必要条件Dp既不是q的充分条件,也不是q的必要条件解析直线l1,l2是异面直线,一定有l1与l2不相交,因此p是q的充分条件;若l1与l2不相交,那么l1与l2可能平行,也可能是异面直线,所以p不是q的必要条件故选A.答案A2(2017郑州联考)已知直线a和平面,l,a,a,且a在,内的射影分别为直线b和c,则直线b和c的位置关系是()A相交或

17、平行 B相交或异面C平行或异面 D相交、平行或异面解析依题意,直线b和c的位置关系可能是相交、平行或异面,选D.答案D3给出下列说法:梯形的四个顶点共面;三条平行直线共面;有三个公共点的两个平面重合;三条直线两两相交,可以确定1个或3个平面其中正确的序号是()A B C D解析显然命题正确由于三棱柱的三条平行棱不共面,错命题中,两个平面重合或相交,错三条直线两两相交,可确定1个或3个平面,则命题正确答案B4(2017安庆模拟)a,b,c是两两不同的三条直线,下面四个命题中,真命题是()A若直线a,b异面,b,c异面,则a,c异面B若直线a,b相交,b,c相交,则a,c相交C若ab,则a,b与c

18、所成的角相等D若ab,bc,则ac解析若直线a,b异面,b,c异面,则a,c相交、平行或异面;若a,b相交,b,c相交,则a,c相交、平行或异面;若ab,bc,则a,c相交、平行或异面;由异面直线所成的角的定义知C正确故选C.答案C5已知正方体ABCDA1B1C1D1中,E,F分别为BB1,CC1的中点,那么异面直线AE与D1F所成角的余弦值为()A. B. C. D.解析连接DF,则AEDF,D1FD为异面直线AE与D1F所成的角设正方体棱长为a,则D1Da,DFa,D1Fa,cosD1FD.答案B二、填空题6.如图,在正方体ABCDA1B1C1D1中,M,N分别为棱C1D1,C1C的中点,

19、有以下四个结论:直线AM与CC1是相交直线;直线AM与BN是平行直线;直线BN与MB1是异面直线;直线MN与AC所成的角为60.其中正确的结论为_(填序号)解析A,M,C1三点共面,且在平面AD1C1B中,但C平面AD1C1B,C1AM,因此直线AM与CC1是异面直线,同理AM与BN也是异面直线,错;M,B,B1三点共面,且在平面MBB1中,但N平面MBB1,BMB1,因此直线BN与MB1是异面直线,正确;连接D1C,因为D1CMN,所以直线MN与AC所成的角就是D1C与AC所成的角,且角为60.答案7如图,正方体的底面与正四面体的底面在同一平面上,且ABCD,则直线EF与正方体的六个面所在的

20、平面相交的平面个数为_解析取CD的中点H,连接EH,FH.在正四面体CDEF中,由于CDEH,CDHF,且EHFHH,所以CD平面EFH,所以AB平面EFH,则平面EFH与正方体的左右两侧面平行,则EF也与之平行,与其余四个平面相交答案48(2014全国卷改编)直三棱柱ABCA1B1C1中,BCA90,M,N分别是A1B1,A1C1的中点,BCCACC1,则BM与AN所成角的余弦值为_解析如图所示,取BC中点D,连接MN,ND,AD.M,N分别是A1B1,A1C1的中点,MN綊B1C1.又BD綊B1C1,MN綊BD,则四边形BDNM为平行四边形,因此NDBM,AND为异面直线BM与AN所成的角

21、(或其补角)设BC2,则BMND,AN,AD,在ADN中,由余弦定理得cosAND.故异面直线BM与AN所成角的余弦值为.答案三、解答题9.如图所示,正方体ABCDA1B1C1D1中,M,N分别是A1B1,B1C1的中点问:(1)AM和CN是否是异面直线?说明理由;(2)D1B和CC1是否是异面直线?说明理由解(1)AM,CN不是异面直线理由:连接MN,A1C1,AC.因为M,N分别是A1B1,B1C1的中点,所以MNA1C1.又因为A1A綊C1C,所以四边形A1ACC1为平行四边形,所以A1C1AC,所以MNAC,所以A,M,N,C在同一平面内,故AM和CN不是异面直线(2)直线D1B和CC

22、1是异面直线理由:因为ABCDA1B1C1D1是正方体,所以B,C,C1,D1不共面假设D1B与CC1不是异面直线,则存在平面,使D1B平面,CC1平面,所以D1,B,C,C1,这与B,C,C1,D1不共面矛盾所以假设不成立,即D1B和CC1是异面直线10(2017咸阳中学月考)如图所示,在三棱锥PABC中,PA底面ABC,D是PC的中点已知BAC,AB2,AC2,PA2.求:(1)三棱锥PABC的体积;(2)异面直线BC与AD所成角的余弦值解(1)SABC222,三棱锥PABC的体积为VSABCPA22.(2)如图,取PB的中点E,连接DE,AE,则EDBC,所以ADE是异面直线BC与AD所

23、成的角(或其补角)在ADE中,DE2,AE,AD2,cosADE.故异面直线BC与AD所成角的余弦值为.能力提升题组(建议用时:20分钟)11以下四个命题中,不共面的四点中,其中任意三点不共线;若点A,B,C,D共面,点A,B,C,E共面,则点A,B,C,D,E共面;若直线a,b共面,直线a,c共面,则直线b,c共面;依次首尾相接的四条线段必共面正确命题的个数是()A0 B1 C2 D3解析假设其中有三点共线,则该直线和直线外的另一点确定一个平面,这与四点不共面矛盾,故其中任意三点不共线,所以正确从条件看出两平面有三个公共点A,B,C,但是若A,B,C共线,则结论不正确;不正确;不正确,因为此

24、时所得的四边形的四条边可以不在一个平面上,如空间四边形答案B12若空间中四条两两不同的直线l1,l2,l3,l4,满足l1l2,l2l3,l3l4,则下列结论一定正确的是()Al1l4Bl1l4Cl1与l4既不垂直也不平行Dl1与l4的位置关系不确定解析如图,在长方体ABCDA1B1C1D1中,记l1DD1,l2DC,l3DA.若l4AA1,满足l1l2,l2l3,l3l4,此时l1l4,可以排除选项A和C.若取C1D为l4,则l1与l4相交;若取BA为l4,则l1与l4异面;取C1D1为l4,则l1与l4相交且垂直因此l1与l4的位置关系不能确定答案D13如图,正方形ACDE与等腰直角三角形

25、ACB所在的平面互相垂直,且ACBC2,ACB90,F,G分别是线段AE,BC的中点,则AD与GF所成的角的余弦值为_解析取DE的中点H,连接HF,GH.由题设,HF綊AD.GFH为异面直线AD与GF所成的角(或其补角)在GHF中,可求HF,GFGH,cosHFG.答案14.如图,在四棱锥OABCD中,底面ABCD是边长为2的正方形,OA底面ABCD,OA2,M为OA的中点(1)求四棱锥OABCD的体积;(2)求异面直线OC与MD所成角的正切值解(1)由已知可求得正方形ABCD的面积S4,所以四棱锥OABCD的体积V42.(2)如图,连接AC,设线段AC的中点为E,连接ME,DE,又M为OA中点,MEOC,则EMD(或其补角)为异面直线OC与MD所成的角,由已知可得DE,EM,MD,()2()2()2,DEM为直角三角形,tanEMD.异面直线OC与MD所成角的正切值为.特别提醒:教师配赠习题、课件、视频、图片、文档等各种电子资源见创新设计高考总复习光盘中内容.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3