ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:688.50KB ,
资源ID:1138869      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1138869-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019高考数学(理)冲刺大题提分练习:大题精做13 函数与导数:参数与分类讨论(理)(教师版) WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2019高考数学(理)冲刺大题提分练习:大题精做13 函数与导数:参数与分类讨论(理)(教师版) WORD版含解析.doc

1、函数与导数:参数与分类讨论大题精做十三精选大题2019揭阳毕业已知函数(,)(1)讨论函数的单调性;(2)当时,求的取值范围【答案】(1)见解析;(2)或【解析】(1),若,当时,在上单调递增;当时,在上单调递减若,当时,在上单调递减;当时,在上单调递增当时,在上单调递增,在上单调递减;当时,在上单调递减,在上单调递增(2),当时,上不等式成立,满足题设条件;当时,等价于,设,则,设,则,在上单调递减,得当,即时,得,在上单调递减,得,满足题设条件;当,即时,而,又单调递减,当,得,在上单调递增,得,不满足题设条件;综上所述,或模拟精做12019周口调研已知函数(1)求函数的单调区间;(2)若

2、对任意,函数的图像不在轴上方,求的取值范围【答案】(1)见解析;(2)【解析】(1)函数的定义域为,当时,恒成立,函数的单调递增区间为;当时,由,得或(舍去),则由,得;由,得,所以的单调递增区间为,单调递减区间为(2)对任意,函数的图像不在轴上方,等价于对任意,都有恒成立,即在上由(1)知,当时,在上是增函数,又,不合题意;当时,在处取得极大值也是最大值,所以令,所以在上,是减函数又,所以要使得,须,即故的取值范围为22019济南期末已知函数(1)若曲线在点处切线的斜率为1,求实数的值;(2)当时,恒成立,求实数的取值范围【答案】(1);(2)【解析】(1),因为,所以(2),设,设,设,注

3、意到,()当时,在上恒成立,所以在上恒成立,所以在上是增函数,所以,所以在上恒成立,所以在上是增函数,所以在上恒成立,符合题意;()当时,所以,使得,当时,所以,所以在上是减函数,所以在上是减函数,所以,所以在上是减函数,所以,不符合题意;综上所述32019漳州一模已知函数(1)求在上的最值;(2)设,若当,且时,求整数的最小值【答案】(1)详见解析;(2)2【解析】解法一:(1),当时,因为,所以在上单调递减,所以,无最小值当时,令,解得,在上单调递减;令,解得,在上单调递增;所以,无最大值当时,因为,等号仅在,时成立,所以在上单调递增,所以,无最大值综上,当时,无最小值;当时,无最大值;当时,无最大值(2),当时,因为,由(1)知,所以(当时等号成立),所以当时,因为,所以,所以,令,已知化为在上恒成立,因为,令,则,在上单调递减,又因为,所以存在使得,当时,在上单调递增;当时,在上单调递减;所以,因为,所以,所以,所以的最小整数值为2解法二:(1)同解法一(2),当时,因为,由(1)知,所以,所以,当时,因为,所以,令,已知化为在上恒成立,因为在上,所以,下面证明,即证在上恒成立,令,则,令,得,当时,在区间上递减;当时,在区间上递增,所以,且,所以当时,即由得当时,所以的最小整数值为2

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3