1、第5讲数列的综合应用基础巩固题组(建议用时:40分钟)一、选择题1(2014昆明调研)公比不为1的等比数列an的前n项和为Sn,且3a1,a2,a3成等差数列,若a11,则S4()A20B0C7D40解析记等比数列an的公比为q(q1),依题意有2a23a1a3,2a1q3a1a1q2,即q22q30,(q3)(q1)0,又q1,因此有q3,则S420.答案A2若9,a,1成等差数列,9,m,b,n,1成等比数列,则ab()A15B15C15D10解析由已知得a5, b2(9)(1)9且b1 025的最小n值是 ()A9B10C11D12解析因为a11,log2an1log2an1(nN),所
2、以an12an,an2n1,Sn2n1,则满足Sn1 025的最小n值是11.答案C4已知an为等比数列,Sn是它的前n项和若a2a32a1,且a4与2a7的等差中项为,则S5 ()A35B33C31D29解析设数列an的公比为q,则由等比数列的性质知,a2a3a1a42a1,即a42.由a4与2a7的等差中项为知,a42a72,a7.q3,即q.a4a1q3a12,a116,S531.答案C5(2014赣州模拟)设yf(x)是一次函数,若f(0)1,且f(1),f(4),f(13)成等比数列,则f(2)f(4)f(2n)等于 ()An(2n3)Bn(n4)C2n(2n3)D2n(n4)解析由
3、题意可设f(x)kx1(k0),则(4k1)2(k1)(13k1),解得k2,f(2)f(4)f(2n)(221)(241)(22n1)2n23n.答案A二、填空题6(2014绍兴调研)已知实数a1,a2,a3,a4构成公差不为零的等差数列,且a1,a3,a4构成等比数列,则此等比数列的公比等于_解析设公差为d,公比为q.则aa1a4,即(a12d)2a1(a13d),解得a14d,所以q.答案7(2013江西卷)某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n(nN*)等于_解析每天植树棵数构成等比数列an,其中a12,q2.则Sn2(2
4、n1)100,即2n1102.n6,最少天数n6.答案68(2013山东省实验中学诊断)数列an满足a13,ananan11,An表示an前n项之积,则A2 013_.解析由a13,ananan11,得an1,所以a2,a3,a43,所以an是以3为周期的数列,且a1a2a31,又2 0133671,所以A2 013(1)6711.答案1三、解答题9(2014杭州模拟)设an是公比大于1的等比数列,Sn为数列an的前n项和已知S37,且a13,3a2,a34构成等差数列(1)求数列an的通项公式(2)令bnnan,n1,2,求数列bn的前n项和Tn.解(1)由已知,得解得a22.设数列an的公
5、比为q,由a22,可得a1,a32q.又S37,可知22q7,即2q25q20,解得q2或.由题意得q1,所以q2.则a11.故数列an的通项为an2n1.(2)由于bnn2n1,n1,2,则Tn122322n2n1,所以2Tn2222(n1)2n1n2n,两式相减得Tn1222232n1n2n2nn2n1,即Tn(n1)2n1.10(2013铜川模拟)已知函数f(x)x22x4,数列an是公差为d的等差数列,若a1f(d1),a3f(d1),(1)求数列an的通项公式;(2)Sn为an的前n项和,求证:.(1)解a1f(d1)d24d7,a3f(d1)d23,又由a3a12d,可得d2,所以
6、a13,an2n1.(2)证明Snn(n2),所以,.能力提升题组(建议用时:25分钟)一、选择题1(2014福州模拟)在等差数列an中,满足3a47a7,且a10,Sn是数列an前n项的和,若Sn取得最大值,则n ()A7B8C9D10解析设公差为d,由题设3(a13d)7(a16d),所以da10,即a1(n1)0,所以n0,同理可得n10时,an0.故当n9时,Sn取得最大值答案C2已知f(x)bx1是关于x的一次函数,b为不等于1的常数,且g(n)设ang(n)g(n1)( nN),则数列an为 ()A等差数列B等比数列C递增数列D递减数列解析a1g(1)g(0)fg(0)g(0)b1
7、1b,当n2时,ang(n)g(n1)fg(n1)fg(n2)bg(n1)g(n2)ban1,所以an是等比数列答案B二、填空题3(2013浙江五校联考)设x为实数,x为不超过实数x的最大整数,记xxx,则x的取值范围是0,1),现定义无穷数列an如下:a1a,当an0时,an1;当an0时,an10.如果a,则a2 013_.解析由题意可得a11,a2,a31,a4,所以数列an是周期为2的数列,所以a 2 013a11.答案1三、解答题4已知等比数列an满足2a1a33a2,且a32是a2,a4的等差中项(1)求数列an的通项公式;(2)若bnanlog2,Snb1b2bn,求使Sn2n1470成立的n的最小值解 (1)设等比数列an的公比为q,依题意,有即由得q23q20,解得q1或q2.当q1时,不合题意,舍去;当q2时,代入得a12,所以an22n12n.故所求数列an的通项公式an2n(nN)(2)bnanlog22nlog22nn.所以Sn212222332nn(222232n)(123n)2n12nn2.因为Sn2n1470,所以2n12nn22n1470,解得n9或n10.因为nN,故使Sn2n1470成立的正整数n的最小值为10.