ImageVerifierCode 换一换
格式:DOC , 页数:16 ,大小:256.50KB ,
资源ID:1138220      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1138220-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019高考数学浙江专用二轮培优讲义:专题三 第2讲 数列求和及综合应用 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2019高考数学浙江专用二轮培优讲义:专题三 第2讲 数列求和及综合应用 WORD版含答案.doc

1、第2讲数列求和及综合应用高考定位数列求和主要考查通过分组转化、错位相减、裂项相消等方法求数列的和,难度中档偏下;数列的综合问题是高考考查的热点,主要考查数列与其他知识的交汇问题.真 题 感 悟 (2018浙江卷)已知等比数列an的公比q1,且a3a4a528,a42是a3,a5的等差中项.数列bn满足b11,数列(bn1bn)an的前n项和为2n2n.(1)求q的值;(2)求数列bn的通项公式.解(1)由a42是a3,a5的等差中项得a3a52a44,所以a3a4a53a4428,解得a48.由a3a520得820,解得q2或q,因为q1,所以q2.(2)设cn(bn1bn)an,数列cn前n

2、项和为Sn.由cn解得cn4n1.由(1)可知an2n1,所以bn1bn(4n1),故bnbn1(4n5),n2,bnb1(bnbn1)(bn1bn2)(b3b2)(b2b1)(4n5)(4n9)73.设Tn3711(4n5),n2,Tn37(4n9)(4n5),所以Tn3444,因此Tn14(4n3),n2,又b11,所以bn15(4n3),n2,又b11也适合上式,所以bn15(4n3).考 点 整 合1.数列求和常用方法(1)分组转化求和:把数列的每一项拆成两项(或多项),再重新组合成两个(或多个)简单的数列,最后分别求和.(2)错位相减法:适用于各项由一个等差数列和一个等比数列对应项的

3、乘积组成的数列.把Sna1a2an两边同乘以相应等比数列的公比q,得到qSna1qa2qanq,两式错位相减即可求出Sn.(3)裂项相消法:即将数列的通项分成两个式子的代数差的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如(其中an是各项均不为零的等差数列,c为常数)的数列.2.数列中的不等式问题主要有证明数列不等式、比较大小或恒成立问题,解决方法如下:(1)利用数列(或函数)的单调性;(2)放缩法:先求和后放缩;先放缩后求和,包括放缩后成等差(或等比)数列再求和,或者放缩后成等差比数列再求和,或者放缩后裂项相消法求和;(3)数学归纳法.3.数列与不等式的综合问题主要题型为:证明

4、不等式,或不等式恒成立问题,转化为最值问题是其主要思路,而求最值常用方法为:作差比较,利用数列单调性求最值;放缩法求最值.热点一数列的求和问题 考法1分组转化求和【例11】 (2018天津卷)设an是等差数列,其前n项和为Sn(nN*);bn是等比数列,公比大于0,其前n项和为Tn(nN*).已知b11,b3b22,b4a3a5,b5a42a6.(1)求Sn和Tn;(2)若Sn(T1T2Tn)an4bn,求正整数n的值.解(1)设等比数列bn的公比为q(q0).由b11,b3b22,可得q2q20.因为q0,可得q2,故bn2n1.所以,Tn2n1.设等差数列an的公差为d.由b4a3a5,可

5、得a13d4.由b5a42a6,可得3a113d16,从而a11,d1,故ann.所以,Sn.(2)由(1),有T1T2Tn(21222n)nn2n1n2.由Sn(T1T2Tn)an4bn可得2n1n2n2n1,整理得n23n40,解得n1(舍),或n4.所以,n的值为4.探究提高1.在处理一般数列求和时,一定要注意运用转化思想.把一般的数列求和转化为等差数列或等比数列进行求和.在利用分组求和法求和时,常常需要对项数n进行讨论,最后再验证是否可以合并为一个表达式.2.分组求和的策略:(1)根据等差、等比数列分组;(2)根据正号、负号分组.考法2裂项相消法求和【例12】 设各项均为正数的数列an

6、的前n项和为Sn,且Sn满足S(n2n3)Sn3(n2n)0,nN*.(1)求a1的值;(2)求数列an的通项公式;(3)证明:对一切正整数n,有.(1)解由题意知,S(n2n3)Sn3(n2n)0,nN*.令n1,有S(1213)S13(121)0,可得SS160,解得S13或2,即a13或2,又an为正数,所以a12.(2)解由S(n2n3)Sn3(n2n)0,nN*可得,(Sn3)(Snn2n)0,则Snn2n或Sn3,又数列an的各项均为正数,所以Snn2n,Sn1(n1)2(n1),所以当n2时,anSnSn1n2n(n1)2(n1)2n.又a1221,所以an2n.(3)证明当n1

7、时,成立;当n 2时,(),所以()()().所以对一切正整数n,有.探究提高(1)解决本题的关键是先放缩后裂项求和,如本题中,根据结构特征合理放缩.(2)裂项相消法的基本思想是把数列的通项an分拆成anbn1bn等形式,从而达到在求和时逐项相消的目的,在解题中要善于根据这个基本思想变换数列an的通项公式,使之符合裂项相消法的条件.考法3错位相减法求和【例13】 (2018杭州调研)已知等差数列an满足:an1an(nN*),a11,该数列的前三项分别加上1,1,3后成等比数列,且an2log2bn1.(1)求数列an,bn的通项公式;(2)求数列anbn的前n项和Tn.解(1)设d为等差数列

8、an的公差,且d0,由a11,a21d,a312d,分别加上1,1,3成等比数列,得(2d)22(42d),因为d0,所以d2,所以an1(n1)22n1,又因为an12log2bn,所以log2bnn即bn.(2)由(1)知,anbn(2n1).Tn, Tn,得Tn221.所以Tn3.探究提高(1)所谓“错位”,就是要找“同类项”相减.要注意的是相减后得到的部分,在求等比数列的和时,一定要查清其项数.(2)为保证结果正确,可对得到的和取n1,2进行验证.【训练11】 (2018北京卷)设an是等差数列,且a1ln 2,a2a35ln 2.(1)求an的通项公式;(2)求ea1ea2ean.解

9、(1)设an的公差为d.因为a2a35ln 2,所以2a13d5ln 2.又a1ln 2,所以dln 2.所以ana1(n1)dnln 2.(2)因为ea1eln 22,eanan1eln 22,所以ean是首项为2,公比为2的等比数列.所以ea1ea2ean22n12.【训练12】 已知an为等差数列,前n项和为Sn(nN*),bn是首项为2的等比数列,且公比大于0,b2b312,b3a42a1,S1111b4.(1)求an和bn的通项公式;(2)求数列a2nbn的前n项和(nN*).解(1)设等差数列an的公差为d,等比数列bn的公比为q(q0),由已知b2b312,得b1(qq2)12,

10、而b12,所以q2q60,又因为q0,解得q2,所以bn2n.由b3a42a1,可得3da18,由S1111b4,可得a15d16,联立,解得a11,d3,由此可得an3n2.所以an的通项公式为an3n2,bn的通项公式为bn2n.(2)设数列a2nbn的前n项和为Tn,由a2n6n2,bn2n,有Tn 4210221623(6n2)2n,2Tn42210231624(6n8)2n(6n2)2n1,上述两式相减,得Tn4262262362n(6n2)2n1,4(6n2)2n1(3n4)2n216.所以Tn(3n4)2n216.所以数列a2nbn的前n项和为(3n4)2n216.热点二数列的综

11、合应用【例2】 已知数列an和bn满足a1a2a3an()bn(nN*).若an为等比数列,且a12,b36b2.(1)求an与bn;(2)设cn(nN*).记数列cn的前n项和为Sn.求Sn;求正整数k,使得对任意nN*均有SkSn.解(1)设数列an的公比为q,由题意a1a2a3an()bn,b3b26,知a3()b3b28.又由a12,得公比q2(q2舍去),所以数列an的通项为an2n(nN*).所以,a1a2a3an2()n(n1).故数列bn的通项为bnn(n1)(nN*).(2)由(1)知cn(nN*),所以Sn(nN*).因为c10,c20,c30,c40;当n5时,cn,而0

12、,得1,所以,当n5时,cna8 B.S1224,a5a8C.S1212,a5a8 D.S1224,a5f(a81),且f(a51)f(a81)0,故a5a8,且a51(a81),即a5a82,又an是等差数列,所以S1212.答案A6.各项均为正数的数列an的前n项和为Sn,且3Snanan1,则a2k()A. B.C. D.解析当n1时,3S1a1a2,即3a1a1a2,a23,当n2时,由3Snanan1,可得3Sn1an1an,两式相减得:3anan(an1an1).an0,an1an13,a2n为一个以3为首项,3为公差的等差数列,a2ka2a4a6a2n3n3,选B.答案B二、填空

13、题7.在数列an中, an,若bn ,则数列bn的前n项和Sn为_.解析an.bn8,Snb1b2bn88.答案8.(2018绍兴调研)设等比数列an的首项a11,且4a1,2a2,a3成等差数列,则公比q_;数列an的前n项和Sn_.解析因为a11,且4a1,2a2,a3成等差数列,所以4q4q2,解得q2,所以Sn2n1.答案22n19.(2016浙江卷)设数列an的前n项和为Sn.若S24,an12Sn1,nN*,则a1_,S5_.解析an12Sn1,Sn1Sn2Sn1,Sn13Sn1,Sn13,数列是公比为3的等比数列,3.又S24,S11,a11,S53434,S5121.答案112

14、110.(2018全国卷)记Sn为数列an的前n项和.若Sn2an1,则S6_.解析法一因为Sn2an1,所以当n1时,a12a11,解得a11;当n2时,a1a22a21,解得a22;当n3时,a1a2a32a31,解得a34;当n4时,a1a2a3a42a41,解得a48;当n5时,a1a2a3a4a52a51,解得a516;当n6时,a1a2a3a4a5a62a61,解得a632.所以S61248163263.法二因为Sn2an1,所以当n1时,a12a11,解得a11,当n2时,anSnSn12an1(2an11),所以an2an1,所以数列an是以1为首项,2为公比的等比数列,所以a

15、n2n1,所以S663.答案6311.(2018北京昌平区调研)已知数列an的奇数项依次构成公差为d1的等差数列,偶数项依次构成公差为d2的等差数列(其中d1,d2为整数),且对任意nN*,都有anan1,若a11,a22,且数列an的前10项和S1075,则d1_,a8_.解析因为a11,a22,所以a31d1,a42d2,a512d1.因为对任意nN*,都有ana2,即1d12,解得d11;又所以解得1d1d212d1.因为S1075,所以51d152d275,所以d1d26,所以d26d1,所以1d16d112d1,解得d10),由a11,a3a22,可得q2q20.因为q0,可得q2,故an2n1.设等差数列bn的公差为d.由a4b3b5,可得b13d4.由a5b42b6,可得3b113d16,从而b11,d1,故bnn.所以,数列an的通项公式为an2n1,数列bn的通项公式为bnn.(2)解由(1),有Sn2n1,故Tn (2k1)2knn2n1n2.证明因为,所以 2.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3