收藏 分享(赏)

数学:3.5.3对数函数 教案 (北师大必修1).doc

上传人:高**** 文档编号:1136304 上传时间:2024-06-05 格式:DOC 页数:3 大小:169KB
下载 相关 举报
数学:3.5.3对数函数 教案 (北师大必修1).doc_第1页
第1页 / 共3页
数学:3.5.3对数函数 教案 (北师大必修1).doc_第2页
第2页 / 共3页
数学:3.5.3对数函数 教案 (北师大必修1).doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

1、3.5.3对数函数一教学目标:1知识与技能:了解反函数的概念,加深对函数思想的理解.2过程与方法:学生通过观察和类比函数图象,体会两种函数的单调性差异.3. 情感、态度、价值观:(1)体会指数函数与指数;(2)进一步领悟数形结合的思想.二重点、难点:重点:指数函数与对数函数内在联系难点:反函数概念的理解三学法与教法:学法:通过图象,理解对数函数与指数函数的关系.教法:探究交流,讲练结合。四教学过程:(一)、复习1、函数的概念2、用列表描点法在同一个直角坐标点中画出的函数图象.(二)、新知探究3210123124832101231248图象如下: y 0x探究:在指数函数中,为自变量,为因变量,

2、如果把当成自变量,当成因变量,那么是的函数吗?如果是,那么对应关系是什么?如果不是,请说明理由.引导学生通过观察、类比、思考与交流,得出结论.在指数函数中,是自变量, 是的函数(),而且其在R上是单调递增函数. 过轴正半轴上任意一点作轴的平行线,与的图象有且只有一个交点.由指数式与对数式关系,即对于每一个,在关系式的作用之下,都有唯一的确定的值和它对应,所以,可以把作为自变量,作为的函数,我们说.从我们的列表中知道,是同一个函数图象.(三)、引出反函数的概念(只让学生理解,加宽学生视野)当一个函数是一一映射时,可以把这个函数的因变量作为一个新的函数自变量,而把这个函数的自变量作为新的函数的因变

3、量,我们称这两个函数为反函数.由反函数的概念可知,同底的指数函数和对数函数互为反函数.如的反函数,但习惯上,通常以表示自变量,表示函数,对调中的,这样是指数函数的反函数.以后,我们所说的反函数是对调后的函数,如的反函数是.同理,1)的反函数是0且.(四)、课堂练习:求下列函数的反函数(1) (2)(五)、归纳小结:1. 今天我们主要学习了什么? 2你怎样理解反函数?(六)、课后思考:(供学有余力的学生练习) 我们知道0与对数函数0且互为反函数,探索下列问题. 1在同一平面直角坐标系中,画出的图象,你能发现这两个函数有什么样的对称性吗? 2取图象上的几个点,写出它们关于直线的对称点坐标,并判断它们是否在的图象上吗?为什么? 3由上述探究你能得出什么结论,此结论对于0成立吗?五、教后反思:

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3