ImageVerifierCode 换一换
格式:DOC , 页数:16 ,大小:228.50KB ,
资源ID:1136219      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1136219-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019高考数学(文)二轮培优(全国通用版)讲义:专题二 第2讲 数列求和及综合应用 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2019高考数学(文)二轮培优(全国通用版)讲义:专题二 第2讲 数列求和及综合应用 WORD版含答案.doc

1、第2讲数列求和及综合应用高考定位1.高考对数列求和的考查主要以解答题的形式出现,通过分组转化、错位相减、裂项相消等方法求数列的和,难度中档偏下;2.在考查数列运算的同时,将数列与不等式、函数交汇渗透.真 题 感 悟1.(2017全国卷)设数列an满足a13a2(2n1)an2n.(1)求an的通项公式;(2)求数列的前n项和.解(1)因为a13a2(2n1)an2n,故当n2时,a13a2(2n3)an12(n1),得(2n1)an2,所以an,又n1时,a12适合上式,从而an的通项公式为an.(2)记的前n项和为Sn,由(1)知,则Sn1.2.(2017山东卷)已知an是各项均为正数的等比

2、数列,且a1a26,a1a2a3.(1)求数列an的通项公式;(2)bn为各项非零的等差数列,其前n项和为Sn,已知S2n1bnbn1,求数列的前n项和Tn.解(1)设an的公比为q,由题意知又an0,解得所以an2n.(2)由题意知:S2n1(2n1)bn1,又S2n1bnbn1,bn10,所以bn2n1.令cn,则cn,因此Tnc1c2cn,又Tn,两式相减得Tn,所以Tn5.考 点 整 合1.(1)数列通项an与前n项和Sn的关系,an(2)应用an与Sn的关系式f(an,Sn)0时,应特别注意n1时的情况,防止产生错误.2.数列求和(1)分组转化求和:一个数列既不是等差数列,也不是等比

3、数列,若将这个数列适当拆开,重新组合,就会变成几个可以求和的部分,分别求和,然后再合并.(2)错位相减法:主要用于求数列anbn的前n项和,其中an,bn分别是等差数列和等比数列.(3)裂项相消法:即将数列的通项分成两个式子的代数差的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如(其中an是各项均不为零的等差数列,c为常数)的数列.温馨提醒裂项求和时,易把系数写成它的倒数或忘记系数导致错误.3.数列与函数、不等式的交汇数列与函数的综合问题一般是利用函数作为背景,给出数列所满足的条件,通常利用点在曲线上给出Sn的表达式,还有以曲线上的切点为背景的问题,解决这类问题的关键在于利用数列

4、与函数的对应关系,将条件进行准确的转化.数列与不等式的综合问题一般以数列为载体,考查最值问题、不等关系或恒成立问题.热点一an与Sn的关系问题【例1】 设数列an的前n项和为Sn,对任意的正整数n,都有an5Sn1成立,bn1log2|an|,数列bn的前n项和为Tn,cn.(1)求数列an的通项公式;(2)求数列cn的前n项和An,并求出An的最值.解(1)因为an5Sn1,nN*,所以an15Sn11,两式相减,得an1an,又当n1时,a15a11,知a1,所以数列an是公比、首项均为的等比数列.所以数列an的通项公式an.(2)bn1log2|an|2n1,数列bn的前n项和Tnn2,

5、cn,所以An1.因此An是单调递增数列,当n1时,An有最小值A11;An没有最大值.探究提高1.给出Sn与an的递推关系求an,常用思路是:一是利用SnSn1an(n2)转化为an的递推关系,再求其通项公式;二是转化为Sn的递推关系,先求出Sn与n之间的关系,再求an.2.形如an1panq(p1,q0),可构造一个新的等比数列.【训练1】 已知数列an的前n项和Sn1an,其中0.(1)证明an是等比数列,并求其通项公式;(2)若S5,求.(1)证明由题意得a1S11a1,故1,a1,故a10.由Sn1an,Sn11an1,得an1an1an,则an1(1)an,由a10,0得an0,所

6、以.因此an是首项为,公比为的等比数列,于是an.(2)解由(1)得Sn1.由S5得1,即.解得1.热点二数列的求和考法1分组转化求和【例21】 (2018合肥质检)已知等差数列an的前n项和为Sn,且满足S424,S763.(1)求数列an的通项公式;(2)若bn2an(1)nan,求数列bn的前n项和Tn.解(1)an为等差数列,解得因此an的通项公式an2n1.(2)bn2an(1)nan22n1(1)n(2n1)24n(1)n(2n1),Tn2(41424n)3579(1)n(2n1)Gn.当n为偶数时,Gn2n,Tnn;当n为奇数时,Gn2(2n1)n2,Tnn2,Tn探究提高1.在

7、处理一般数列求和时,一定要注意运用转化思想.把一般的数列求和转化为等差数列或等比数列进行求和.在利用分组求和法求和时,常常根据需要对项数n的奇偶进行讨论.最后再验证是否可以合并为一个表达式.2.分组求和的策略:(1)根据等差、等比数列分组;(2)根据正号、负号分组.考法2裂项相消法求和【例22】 (2018郑州调研)设Sn为数列an的前n项和,Sn2n25n.(1)求证:数列3an为等比数列;(2)设bn2Sn3n,求数列的前n项和Tn.(1)证明Sn2n25n,当n2时,anSnSn14n3.又当n1时,a1S17也满足an4n3.故an4n3(nN*).由an1an4,得3an1an348

8、1.数列3an是公比为81的等比数列.(2)解bn4n27n,Tn.探究提高1.裂项相消法求和就是将数列中的每一项裂成两项或多项,使这些裂开的项出现有规律的相互抵消,要注意消去了哪些项,保留了哪些项.2.消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项.【训练2】 (2018日照质检)已知数列an满足a11,an1an2n1(nN*).(1)求数列an的通项公式;(2)设bn,求数列bn的前n项和Sn.解(1)因为anan12n1(n2),又an(anan1)(an1an2)(a2a1)a1,所以an(2n1)(2n3)31n2(n2).因为a11也满足ann2,所以

9、ann2.(2)因为bn,所以Sn,所以Sn1.考法3错位相减求和【例23】 (2018潍坊一模)公差不为0的等差数列an的前n项和为Sn,已知S410,且a1,a3,a9成等比数列.(1)求an的通项公式;(2)求数列的前n项和Tn.解(1)设an的公差为d,由题设得解之得a11,且d1.因此ann.(2)令cn,则Tnc1c2cn,Tn,得:Tn,Tn.探究提高1.一般地,如果数列an是等差数列,bn是等比数列,求数列anbn的前n项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列bn的公比,然后作差求解.2.在写“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”,以便下一

10、步准确地写出“SnqSn”的表达式.【训练3】 (2018邯郸调研)已知Sn为等比数列an的前n项和,且S4S33a3,a29.(1)求数列an的通项公式;(2)设bn(2n1)an,求数列bn的前n项和Tn.解(1)设等比数列an的公比为q,由S4S32a3,可得a4S4S33a3,即q3,又a1q9,可得a13,则数列an的通项公式为ana1qn13n.(2)由(1)知bn(2n1)3n,则数列bn的前n项和Tn13332(2n1)3n,3Tn132333(2n1)3n1,两式相减得2Tn3232333n(2n1)3n132(2n1)3n13n16(12n)3n1(22n)3n16,故Tn

11、(n1)3n13.热点三与数列相关的综合问题【例3】 设f(x)x22x,f(x)是yf(x)的导函数,若数列an满足an1f(an),且首项a11.(1)求数列an的通项公式;(2)数列an的前n项和为Sn,等比数列bn中,b1a1,b2a2,数列bn的前n项和为Tn,请写出适合条件TnSn的所有n的值.解(1)由f(x)x22x,得f(x)x2.an1f(an),且a11.an1an2则an1an2,因此数列an是公差为2,首项为1的等差数列.an12(n1)2n1.(2)数列an的前n项和Snn2,等比数列bn中,b1a11,b2a23,q3.bn3n1.数列bn的前n项和Tn.TnSn

12、可化为n2.又nN*,n1,或n2故适合条件TnSn的所有n的值为1和2.探究提高1.求解数列与函数交汇问题注意两点:(1)数列是一类特殊的函数,其定义域是正整数集(或它的有限子集),在求数列最值或不等关系时要特别重视;(2)解题时准确构造函数,利用函数性质时注意限制条件.2.数列为背景的不等式恒成立、不等式证明,多与数列的求和相联系,最后利用数列或数列对应函数的单调性处理.【训练4】 (2018北京燕博园检测)已知数列an满足nan(n1)an12n22n(n2,3,4,),a16.(1)求证为等差数列,并求出an的通项公式;(2)数列的前n项和Sn,求证:Sn.证明(1)因为nan(n1)

13、an12n22n,所以2,所以数列是以3为首项,2为公差的等差数列,所以32(n1)2n1,即an(n1)(2n1).(2)因为,所以Sn1 025的最小n值是()A.9 B.10 C.11 D.12解析因为a11,log2an1log2an1(nN*),所以an12an,an2n1,Sn2n1,则满足Sn1 025的最小n值是11.答案C3.已知Tn为数列的前n项和,若mT101 013恒成立,则整数m的最小值为()A.1 026 B.1 025 C.1 024 D.1 023解析因为1,所以Tnn1,则T101 013111 0131 024,又mT101 013,所以整数m的最小值为1

14、024.答案C4.已知数列an满足an1an2,a15,则|a1|a2|a6|()A.9 B.15 C.18 D.30解析an1an2,a15,数列an是公差为2,首项为5的等差数列.an52(n1)2n7.数列an的前n项和Snn26n.令an2n70,解得n.n3时,|an|an;n4时,|an|an.则|a1|a2|a6|a1a2a3a4a5a6S62S362662(3263)18.答案C5.对于数列an,定义数列an1an为数列an的“差数列”,若a12,数列an的“差数列”的通项公式为an1an2n,则数列an的前n项和Sn()A.2 B.2n C.2n12 D.2n12解析因为an

15、1an2n,所以an(anan1)(an1an2)(a2a1)a12n12n2222222n222n,所以Sn2n12.答案C二、填空题6.(2018昆明诊断)数列an满足an,则等于_.解析an,则222.答案7.记Sn为正项数列an的前n项和,且an12,则S2 018_.解析由题意得4Sn(an1)2,当n1时,4a1(a11)2,a11,当n2时,4Sn1(an11)2,得aa2(anan1)0,所以(anan12)(anan1)0,又an0,所以anan12,则an是以1为首项,2为公差的等差数列.所以an2n1,S2 0182 0182.答案2 01828.(2018贵阳质检)已知

16、x表示不超过x的最大整数,例如:2.32,1.52.在数列an中,anlg n,nN,记Sn为数列an的前n项和,则S2 018_.解析当1n9时,anlg n0.当10n99时,anlg n1.当100n999时,anlg n2.当1 000n2 018时,anlg n3.故S2 0189090190021 01934 947.答案4 947三、解答题9.(2018济南模拟)记Sn为数列an的前n项和,已知Sn2n2n,nN*.(1)求数列an的通项公式;(2)设bn,求数列bn的前n项和Tn.解(1)由Sn2n2n,得当n1时,a1S13;当n2时,anSnSn12n2n2(n1)2(n1

17、)4n1.又a13满足上式.所以an4n1(nN*).(2)bn.所以Tn.10.(2018青岛二中检测)已知递增的等比数列an满足a2a312,a1a427.(1)求数列an的通项公式;(2)设bn(n1)an,求bn的前n项和Sn.解(1)数列an是等比数列,且a2a3a1a427,由得或(舍去).q3,则数列an的通项公式为ana23n23n1.(2)由(1)知bn(n1)3n1,Snb1b2b3bn 230331432(n1)3n13Sn231332433(n1)3n由得,2Sn23132333n1(n1)3n2(n1)3n(2n1)3n,故Sn.11.已知数列an的前n项和为Sn,点(n,Sn)(nN*)均在函数f(x)3x22x的图象上.(1)求数列an的通项公式.(2)设bn,Tn是数列bn的前n项和,求使得2Tn2 018对任意nN*都成立的实数的取值范围.解(1)因为点(n,Sn)均在函数f(x)3x22x的图象上,所以Sn3n22n.当n1时,a1S1321;当n2时,anSnSn1(3n22n)3(n1)22(n1)6n5.又a11也满足an6n5,所以an6n5(nN*).(2)因为bn,所以Tn,所以2Tn11.又2Tn2 018对任意nN*都成立,所以12 018,即2 019.故实数的取值范围是2 019,).

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3