ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:412.50KB ,
资源ID:1134986      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1134986-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2018版高考复习方案大一轮备考解题策略-文数:专题篇 第2章 导数 11 用导数—极限法解一类求参数取值范围的高考题 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2018版高考复习方案大一轮备考解题策略-文数:专题篇 第2章 导数 11 用导数—极限法解一类求参数取值范围的高考题 WORD版含答案.doc

1、用导数极限法解一类求参数取值范围的高考题虽说在现行高中数学教材中没有给出极限的定义(只是在导数的定义中使用了极限符号),但在教材中从多方位多角度的渗透了极限思想:在研究双曲线的渐近线、求的近似值、二分法求方程近似解、幂指对函数增长速度的快慢、介绍无理数指数幂的意义以及在统计中研究密度曲线等等都渗透了极限思想. 在即将出台的高中数学课标及教材中均会给出极限的定义,所以这里先由函数极限的定义给出函数极限的保号性的相关结论,再给出该结论在求解函数问题中的应用. 函数极限的定义 若存在实数b,当时,则当时,函数存在极限,且极限是b,记作. 由该定义,还可得 函数极限的保号性 (1)若,则; 若,则;

2、若,则. (2)若,则; 若,则; 若,则.题1 (2006年高考全国卷II理科第20题)设函数.若对所有的,都有成立,求实数的取值范围. (答案:.)题2 (2007年高考全国卷I理科第20题)设函数,若对所有的,都有,求实数的取值范围. (答案:.)题3 (2008年高考全国卷II理科第22(2)题)设函数,若对所有的,都有,求实数的取值范围.(答案:.)题4 (2010年高考新课标全国卷文科第21(2)题)设函数,若当时,都有,求的取值范围.(答案:.)题5 (2010年高考新课标全国卷理科第21(2)题)设函数,若当时,求的取值范围.(答案:.)题1的解 令,得在上恒成立.考虑到,只需

3、在上单调递增.问题转化为:在上恒成立.所以.可见满足题设.若,则.由函数极限的定义得:存在,当时,所以在上单调递减.所以当时,这与题设矛盾!因此,所求的取值范围是.对于题2、3,也可这样简洁求解.这就是文献1给出的解法(实际上,由下文的定理3知,题4、5也可这样求解),本文就把这种解法叫做导数极限法,下面给出这种解法的一般结论.定理1 设函数满足“当时,函数可导,的最小值是,且”.若时都有,则的取值范围是.证明 设,得.当时,可得“时都有”,所以“时都有”,所以时都有,即.当时,得,所以存在,当时,是减函数,得,这与题设矛盾!所以的取值范围是.推论 设函数满足“当时,函数可导,的最小值是,且”

4、.若时都有,则的取值范围是.定理2 设函数满足“当时,函数可导,的最小值是,且”.若时都有,则的取值范围是.证明 设,得.当时,可得“时都有”,所以“时都有”,所以时都有,即.当时,得,所以存在,当时,是减函数,得,这与题设矛盾!所以的取值范围是.定理3 设函数满足“当时,函数可导,的最大值是,且”.若时都有,则的取值范围是.证明 在定理1中令可证.定理4 设函数满足“当时,函数可导,的最大值是,且”.若时都有,则的取值范围是.证明 类似于定理2的证明可证.(以下定理6,8的证明均同此.)定理5 设函数满足“当时,函数均可导,的最小值是,且”.若时都有,则的取值范围是.证明 设,得.当时,可得

5、“时都有”,所以时都有,所以时都有,即.当时,得,所以存在,当时,是减函数,得,是减函数,所以,这与题设矛盾!所以的取值范围是.定理6 设函数满足“当时,函数均可导,的最小值是,且”.若时都有,则的取值范围是.定理7 设函数满足“当时,函数均可导,的最大值是,且”.若时都有,则的取值范围是.证明 在定理5中令可证.定理8 设函数满足“当时,函数均可导,的最大值是,且”.若时都有,则的取值范围是.由推论可立得题1,2,4的答案;由定理3可立得题3的答案;由定理5可立得题5的答案.读者还可给出定理58的推广.下面由推论给出题4的解答:可得题设即“当时,都有”,也即“当时,都有”,还“当时,都有”.再由推论可立得答案为.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3