1、2014-2015学年浙江省杭州市萧山区五校联考高一(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求)1设全集U=R,集合A=x|1x4,集合B=x|2x5,则A(UB)=( )Ax|1x2Bx|x2Cx|x5Dx|1x22函数f(x)=+lg(1+x)的定义域是( )A(,1)B(1,+)C(1,1)(1,+)D(,+)3下列函数中,是奇函数且在区间(0,1)内单调递减的函数是( )Ay=logxBCy=x3Dy=tanx4三个数0.993.3,log3,log20.8的大小关系为( )Alog20.80.993.3log3
2、Blog20.8log30.993.3C0.993.3log20.81log3Dlog30.993.3log20.85函数f(x)=ex+4x3的零点所在的大致区间是( )A(,0)B(0,)C(,)D(,)6已知角的终边与单位圆相交于点P(sin,cos),则sin=( )ABCD7将函数y=sin(x+)的图象上各点的横坐标伸长到原来2的倍,再向左平移个单位,所得图象的函数解析式是( )Ay=sin(2x+)By=sin(2x+)Cy=cosDy=sin(+)8已知f(x)在R上是奇函数,且f(x+4)=f(x),当x(0,2)时,f(x)=2x2,则f(7)=( )A2B2C98D989
3、函数f(x)=的大致图象为( )ABCD10已知函数,则f(x)的值域是( )A1,1BCD二、填空题(本大题共7小题,每小题4分,共28分.)11已知集合A=x|1x14,B=(,a),若AB,则实数a的取值范围是_12已知幂函数y=f(x)的图象过点,则f(9)=_13已知log53=a,5b=2,则5a+2b=_14若扇形的周长是8cm,面积4cm2,则扇形的圆心角为_rad15若,则=_16若函数的最大值为3,最小值为1,其图象相邻两条对称轴之间的距离为,则=_17已知函数f(x)=是(,+)上的减函数,则a的取值范围是_三、解答题(本大题共4小题,共42分解答应写出文字说明、证明过程
4、或演算步骤)18已知函数f(x)=,且f(0)=1(1)求f(x)的解析式;(2)已知,且2,求sincos19已知aR,函数f(x)=x|xa|,()当a=2时,写出函数y=f(x)的单调递增区间;()当a2时,求函数y=f(x)在区间1,2上的最小值20已知函数f(x)=为奇函数(1)求实数a的值;(2)试判断函数的单调性并加以证明;(3)对任意的xR,不等式f(x)m恒成立,求实数m的取值范围21已知f(x)=sin(2x+)+2,求:(1)f(x)的最小正周期及对称轴方程;(2)f(x)的单调递增区间;(3)若方程f(x)m+1=0在x0,上有解,求实数m的取值范围2014-2015学
5、年浙江省杭州市萧山区五校联考高一(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求)1设全集U=R,集合A=x|1x4,集合B=x|2x5,则A(UB)=( )Ax|1x2Bx|x2Cx|x5Dx|1x2【考点】交、并、补集的混合运算 【专题】集合【分析】根据集合的基本运算即可得到结论【解答】解:B=x|2x5,CUB=x|x2或x5,则A(UB)=x|1x2,故选D【点评】本题主要考查集合的基本运算,比较基础2函数f(x)=+lg(1+x)的定义域是( )A(,1)B(1,+)C(1,1)(1,+)D(,+)【考点】函数的定义
6、域及其求法 【专题】函数的性质及应用【分析】根据题意,结合分式与对数函数的定义域,可得,解可得答案【解答】解:根据题意,使f(x)=+lg(1+x)有意义,应满足,解可得(1,1)(1,+);故选:C【点评】本题考查函数的定义域,首先牢记常见的基本函数的定义域,如果涉及多个基本函数,取它们的交集即可3下列函数中,是奇函数且在区间(0,1)内单调递减的函数是( )Ay=logxBCy=x3Dy=tanx【考点】函数单调性的判断与证明;函数奇偶性的判断 【专题】数形结合;数学模型法;函数的性质及应用【分析】Ay=logx(x0)为非奇非偶函数,即可判断出正误;B.在区间(0,1)内单调递增;Cy=
7、x3,满足题意;Dy=tanx在区间(0,1)内单调递增【解答】解:Ay=logx(x0)为非奇非偶函数,不正确;B.是奇函数,但是在区间(0,1)内单调递增,不正确;Cy=x3,是奇函数且在区间(0,1)内单调递减,正确;Dy=tanx是奇函数,但是在区间(0,1)内单调递增,不正确故选:C【点评】本题考查了函数奇偶性与单调性,考查了推理能力与计算能力,属于中档题4三个数0.993.3,log3,log20.8的大小关系为( )Alog20.80.993.3log3Blog20.8log30.993.3C0.993.3log20.81log3Dlog30.993.3log20.8【考点】对数
8、值大小的比较 【专题】转化思想;数学模型法;函数的性质及应用【分析】利用指数函数与对数函数的单调性即可得出【解答】解:00.993.31,log31,log20.80,log20.80.993.3log3,故选:A【点评】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于中档题5函数f(x)=ex+4x3的零点所在的大致区间是( )A(,0)B(0,)C(,)D(,)【考点】函数零点的判定定理 【专题】函数的性质及应用【分析】确定f(0)=13=20,f()=10,f()=0,f(1)=e+43=e+10,根据零点存在定理,可得结论【解答】解:函数f(x)=ex+4x3在R上
9、是增函数,求解:f(0)=13=20,f()=10,f()=0,f(1)=e+43=e+10,根据零点存在定理,可得函数f(x)=2x+3x4的零点所在的大致区间是(,)故选:C【点评】本题考查零点存在定理,考查学生的计算能力,属于基础题6已知角的终边与单位圆相交于点P(sin,cos),则sin=( )ABCD【考点】单位圆与周期性 【专题】三角函数的求值【分析】利用单位圆的性质求解【解答】解:角的终边与单位圆相交于点P(sin,cos),sin=cos=cos(2)=cos=故选:D【点评】本题考查角的正弦值的求法,是基础题,解题时要认真审题,注意单位圆的性质的灵活运用7将函数y=sin(
10、x+)的图象上各点的横坐标伸长到原来2的倍,再向左平移个单位,所得图象的函数解析式是( )Ay=sin(2x+)By=sin(2x+)Cy=cosDy=sin(+)【考点】函数y=Asin(x+)的图象变换 【专题】三角函数的图像与性质【分析】根据三角函数的图象关系即可得到结论【解答】解:将函数y=sin(x+)的图象上各点的横坐标伸长到原来2的倍,得到y=sin(x+),再向左平移个单位,所得图象的函数解析式是y=sin(x+)+=sin(x+)=cos,故选:C【点评】本题主要考查函数y=Asin(x+)的图象变换规律,属于中档题8已知f(x)在R上是奇函数,且f(x+4)=f(x),当x
11、(0,2)时,f(x)=2x2,则f(7)=( )A2B2C98D98【考点】函数的周期性;奇函数;函数奇偶性的性质 【分析】利用函数周期是4且为奇函数易于解决【解答】解:因为f(x+4)=f(x),故函数的周期是4所以f(7)=f(3)=f(1),又f(x)在R上是奇函数,所以f(1)=f(1)=212=2,故选A【点评】本题考查函数的奇偶性与周期性9函数f(x)=的大致图象为( )ABCD【考点】函数的图象 【专题】函数的性质及应用【分析】根据函数的奇偶性和函数的单调性,即可判断函数的图象【解答】解:f(x)=f(x),且定义域关于原点对称,函数f(x)为偶函数,即函数f(x)的图象关于y
12、轴对称,故排除A,B当x1是函数y=lg|x|为增函数,当0x1时,函数y=lg|x|为减函数,当x0,函数y=为减函数,故函数f(x)在(0,1)上为增函数,在(1,+)为减函数,故图象为先增后减,故排除C,故选:D【点评】本题主要考查了函数的图象的识别,关键是掌握函数的奇偶性和函数的单调性,属于基础题10已知函数,则f(x)的值域是( )A1,1BCD【考点】正弦函数的定义域和值域 【专题】计算题【分析】去绝对值号,将函数变为分段函数,分段求值域,在化为分段函数时应求出每一段的定义域,由三角函数的性质求之【解答】解:由题 =,当 时,f(x)1,当 时,f(x)(1,)故可求得其值域为 故
13、选:D【点评】本题考点是在角函数求值域,表达式中含有绝对值,故应先去绝对值号,变为分段函数,再分段求值域二、填空题(本大题共7小题,每小题4分,共28分.)11已知集合A=x|1x14,B=(,a),若AB,则实数a的取值范围是(5,+)【考点】集合的包含关系判断及应用 【专题】计算题;转化思想;综合法;集合【分析】先解出集合A=(2,5,而根据AB便得到,a5,即可得出结论【解答】解:A=(2,5,AB;5a,a(5,+)故答案为:(5,+)【点评】考查子集的概念,注意由AB得到5a,而不是5a12已知幂函数y=f(x)的图象过点,则f(9)=27【考点】幂函数的概念、解析式、定义域、值域
14、【专题】函数思想;待定系数法;函数的性质及应用【分析】用待定系数法求出幂函数y=f(x)的解析式,再计算f(9)的值【解答】解:设幂函数y=f(x)=xa,aR,且图象过点,2a=2,解得a=,f(x)=;f(9)=27故答案为:27【点评】本题考查了求函数的解析式与计算函数值的应用问题,是基础题目13已知log53=a,5b=2,则5a+2b=12【考点】对数的运算性质 【专题】计算题;函数思想;函数的性质及应用【分析】利用指数式与对数式的互化代入,求解表达式的值即可【解答】解: log53=a,5b=2,可得b=log52,5a+2b=12故答案为:12【点评】本题考查对数运算法则的应用,
15、指数式与对数式的互化,考查计算能力14若扇形的周长是8cm,面积4cm2,则扇形的圆心角为2rad【考点】弧长公式 【专题】计算题【分析】设扇形的圆心角为,半径为R,则根据弧长公式和面积公式有,故可求扇形的圆心角【解答】解:设扇形的圆心角为,半径为R,则故答案为:2【点评】本题主要考察了弧长公式和面积公式的应用,属于基础题15若,则=【考点】运用诱导公式化简求值;三角函数的化简求值 【专题】计算题;函数思想;三角函数的求值【分析】利用诱导公式化简所求表达式为正切函数的形式,代入求解即可【解答】解:,则=故答案为:【点评】本题考查诱导公式以及同角三角函数的基本关系式的应用,函数值的求法,考查计算
16、能力16若函数的最大值为3,最小值为1,其图象相邻两条对称轴之间的距离为,则=3【考点】由y=Asin(x+)的部分图象确定其解析式;正弦函数的图象 【专题】计算题;函数思想;综合法;三角函数的图像与性质【分析】由函数的最值求出A和B,由周期求出,可得函数的解析式,再代值计算即可【解答】解:的最大值为3,最小值为1,解的A=2,B=1,再根据图象相邻两条对称轴之间的距离为,可得函数的周期为=2,求得=2,f(x)=2sin(2x)+1,=2sin(3)+1=2sin+2=3,故答案为:3【点评】本题主要考查由函数y=Asin(x+)+B的部分图象求解析式,由函数的最值求出A和B,由周期求出,属
17、于基础题17已知函数f(x)=是(,+)上的减函数,则a的取值范围是(1,2【考点】函数单调性的性质 【专题】函数的性质及应用【分析】根据函数单调性的定义和性质即可得到结论【解答】解:根据分段函数单调性的性质则满足,即,解得1a2,故答案为:(1,2【点评】本题主要考查函数单调性的应用,根据分段函数单调性的性质是解决本题的关键三、解答题(本大题共4小题,共42分解答应写出文字说明、证明过程或演算步骤)18已知函数f(x)=,且f(0)=1(1)求f(x)的解析式;(2)已知,且2,求sincos【考点】由y=Asin(x+)的部分图象确定其解析式;正弦函数的图象 【专题】计算题;转化思想;转化
18、法;三角函数的图像与性质【分析】(1)利用f(0)=1求出的值即得三角函数的解析式;(2)根据三角函数值求出角的取值范围,再计算三角函数值【解答】解:(1),又,;(2),;又,【点评】本题考查了求三角函数的解析式以及根据三角函数值求值的应用问题,是中档题目19已知aR,函数f(x)=x|xa|,()当a=2时,写出函数y=f(x)的单调递增区间;()当a2时,求函数y=f(x)在区间1,2上的最小值【考点】函数单调性的判断与证明;二次函数在闭区间上的最值 【专题】函数的性质及应用【分析】()把a=2代入,可得f(x)=,由二次函数的知识可得;()因为a2,当x1,2时,f(x)=x(ax)=
19、,由二次函数的对称性和单调性,分类讨论可得答案【解答】解:()当a=2时,f(x)=x|x2|=,由二次函数的知识可知,单调递增区间为(,1)和(2,+);()因为a2,当x1,2时,f(x)=x(ax)=,当,即2a3时,f(x)min=f(2)=2a4,当,即a3时,f(x)min=f(1)=a1故f(x)min=【点评】本题考查函数的单调性的判断与证明,涉及二次函数在闭区间的最值与分类讨论的思想,属基础题20已知函数f(x)=为奇函数(1)求实数a的值;(2)试判断函数的单调性并加以证明;(3)对任意的xR,不等式f(x)m恒成立,求实数m的取值范围【考点】函数奇偶性的性质;函数单调性的
20、判断与证明;函数恒成立问题 【专题】证明题;综合题;函数思想;函数的性质及应用【分析】(1)解f(0)=0可得a值;(2)由单调性的定义可得;(3)由(1)(2)可得函数f(x)为增函数,当x趋向于正无穷大时,f(x)趋向于1,可得m1【解答】解:(1)由函数为奇函数可得f(0)=0,解得a=1;(2)由(1)可得f(x)=1,可得函数在R上单调递增,下面证明:任取实数x1x2,则f(x1)f(x2)=0,函数f(x)=R上的增函数;(3)函数f(x)为增函数,当x趋向于正无穷大时,f(x)趋向于1,要使不等式f(x)m恒成立,则需m1【点评】本题考查函数的奇偶性和单调性以及恒成立问题,属中档
21、题21已知f(x)=sin(2x+)+2,求:(1)f(x)的最小正周期及对称轴方程;(2)f(x)的单调递增区间;(3)若方程f(x)m+1=0在x0,上有解,求实数m的取值范围【考点】正弦函数的图象 【专题】综合题;转化思想;综合法;三角函数的图像与性质【分析】(1)由条件利用正弦函数的最小正周期、正弦函数的图象的对称性,得出结论(2)求出y=sin(2x+)的减区间,即为f(x)的单调递增区间,再利用正弦函数的单调性得出结论(3)由题意可得函数f(x)的图象和直线y=m1在x0,上有交点,根据正弦函数的定义域和值域求出f(x)的值域,可得m的范围【解答】解:(1)由于f(x)=sin(2x+)+2,它的最小正周期为=,令2x+=k+,求得x=+,kZ,故函数f(x)的图象的对称轴方程为x=+,kZ(2)令2k+2x+2k+,求得 k+xk+,可得函数f(x)的增区间为k+,k+,kZ(3)若方程f(x)m+1=0在x0,上有解,则函数f(x)的图象和直线y=m1在x0,上有交点x0,2x+,sin(2x+),1,f(x)2,故m12,m3,【点评】本题主要考查正弦函数的最小正周期、正弦函数的图象的对称性、单调性,正弦函数的定义域和值域,属于中档题