收藏 分享(赏)

2022版新高考数学一轮复习课后限时集训:52 直线与椭圆 WORD版含解析.doc

上传人:高**** 文档编号:1128421 上传时间:2024-06-04 格式:DOC 页数:11 大小:124.50KB
下载 相关 举报
2022版新高考数学一轮复习课后限时集训:52 直线与椭圆 WORD版含解析.doc_第1页
第1页 / 共11页
2022版新高考数学一轮复习课后限时集训:52 直线与椭圆 WORD版含解析.doc_第2页
第2页 / 共11页
2022版新高考数学一轮复习课后限时集训:52 直线与椭圆 WORD版含解析.doc_第3页
第3页 / 共11页
2022版新高考数学一轮复习课后限时集训:52 直线与椭圆 WORD版含解析.doc_第4页
第4页 / 共11页
2022版新高考数学一轮复习课后限时集训:52 直线与椭圆 WORD版含解析.doc_第5页
第5页 / 共11页
2022版新高考数学一轮复习课后限时集训:52 直线与椭圆 WORD版含解析.doc_第6页
第6页 / 共11页
2022版新高考数学一轮复习课后限时集训:52 直线与椭圆 WORD版含解析.doc_第7页
第7页 / 共11页
2022版新高考数学一轮复习课后限时集训:52 直线与椭圆 WORD版含解析.doc_第8页
第8页 / 共11页
2022版新高考数学一轮复习课后限时集训:52 直线与椭圆 WORD版含解析.doc_第9页
第9页 / 共11页
2022版新高考数学一轮复习课后限时集训:52 直线与椭圆 WORD版含解析.doc_第10页
第10页 / 共11页
2022版新高考数学一轮复习课后限时集训:52 直线与椭圆 WORD版含解析.doc_第11页
第11页 / 共11页
亲,该文档总共11页,全部预览完了,如果喜欢就下载吧!
资源描述

1、课后限时集训(五十二)直线与椭圆建议用时:40分钟一、选择题1直线yx2与椭圆1有两个公共点,则m的取值范围是()A(1,)B(1,3)(3,)C(3,)D(0,3)(3,)B由得(3m)x24mxm0,由题意可知解得又m0,且m3,m1且m3.故选B.2过椭圆1的右焦点作一条斜率为2的直线与椭圆交于A,B两点,O为坐标原点,则OAB的面积为()AB CDB由题意知椭圆的右焦点F的坐标为(1,0),则直线AB的方程为y2x2.联立 解得交点坐标为(0,2),不妨设A点的纵坐标yA2,B点的纵坐标yB,SOAB|OF|yAyB|1.3(2020沙坪坝区校级模拟)已知椭圆C:1,过点P(2,1)的

2、直线交椭圆于A,B两点,若P为线段AB中点,则|AB|()AB CDD设点A(x1,y1),点B(x2,y2),x1x24,y1y22,由两式相减得:0,化简得:1,直线AB的斜率为1,又直线AB过点P(2,1),直线AB的方程为:y1(x2),即yx3,联立方程消去y得3x212x100,x1x24,x1x2,|AB|,故选D.4已知椭圆C:1(ab0)与直线yx3只有一个公共点,且椭圆的离心率为,则椭圆C的方程为()A1B1C1D1B将直线方程yx3代入C的方程并整理得(a2b2)x26a2x9a2a2b20,由椭圆与直线只有一个公共点得,(6a2)24(a2b2)(9a2a2b2)0,化

3、简得a2b29,则,解得a25,b24,所以椭圆的方程为1.5直线l过椭圆y21的左焦点F,且与椭圆交于P,Q两点,M为PQ的中点,O为原点,若FMO是以OF为底边的等腰三角形,则直线l的斜率为()AB CDB由y21,得a22,b21,所以c2a2b2211,则c1,则左焦点F(1,0)由题意可知,直线l的斜率存在且不等于0,设直线l的方程为ykxk.设l与椭圆交于点P(x1,y1),Q(x2,y2),联立得(2k21)x24k2x2k220.则PQ的中点M的横坐标为.因为FMO是以OF为底边的等腰三角形,所以,解得k.6(多选)(2020福建侨光中学月考)在平面内,若曲线C上存在点P,使点

4、P到点A(3,0),B(3,0)的距离之和为10,则称曲线C为“有用曲线”以下曲线是“有用曲线”的是()Axy5Bx2y29C1Dx216yACD设点P的坐标为(x,y),由点P到点A(3,0),B(3,0)的距离之和为10,可得点P的轨迹方程为1.对于A,由整理得41x2250x2250,250244122525 6000,因此曲线xy5上存在点P满足条件,故选项A给出的曲线是“有用曲线”;同理可得曲线1与1有交点(5,0)与(5,0),曲线x216y与1显然也有交点,因此可判断选项C,D给出的曲线是“有用曲线”,而选项B给出的曲线x2y29在曲线1的内部,无交点,故不是“有用曲线”二、填空

5、题7过椭圆C:1的左焦点F作倾斜角为60的直线l与椭圆C交于A,B两点,则等于_由题意可知F(1,0),故l的方程为y(x1)由得5x28x0,x0或.A(0,),B.又F(1,0),|AF|2,|BF|,.8(2020碑林区一模)在平面直角坐标系中,动点P在椭圆C:1上运动,则点P到直线xy50的距离的最大值为_5设P(4cos ,3sin ),02,点P到直线xy50的距离为d,所以dmax5.9已知椭圆1(ab0)的一条弦所在的直线方程是xy50,弦的中点坐标是M(4,1),则椭圆的离心率为_设直线与椭圆交点为A(x1,y1),B(x2,y2),分别代入椭圆方程,由点差法可知yMxM,代

6、入k1,M(4,1),解得,e.三、解答题10设F1,F2分别是椭圆C:1(ab0)的左、右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求椭圆C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|5|F1N|,求a,b的值解(1)易知M,由得2b23ac,故2(a2c2)3ac,解得,2(舍去). 故椭圆的离心率为.(2)由题意,原点O为F1F2的中点, MF2y轴,所以直线MF1与y轴的交点D(0,2)是线段MF1的中点故4,即b24a.由|MN|5|F1N|,得|DF1|2|F1N|.设N(x1,y1),由题意知y10,则即代入C的方

7、程,得1.将及c代入得1.解得a7,b24a28.故a7,b2.11(2020汨罗市一模)已知椭圆C:1(ab0)的离心率为,短轴长为2.(1)求椭圆C的标准方程;(2)若直线l:ykxm(k0)与椭圆C交于不同的两点M,N,且线段MN的垂直平分线过定点(1,0),求实数k的取值范围解(1)由题意可知解得故椭圆C的标准方程为y21.(2)设M(x1,y1),N(x2,y2),将ykxm代入椭圆方程,消去y得(14k2)x28kmx4m240,所以(8km)24(14k2)(4m24)0,即m24k21,由根与系数关系得x1x2,则y1y2, 所以线段MN的中点P的坐标为.又线段MN的垂直平分线

8、l的方程为y(x1),由点P在直线l上,得,即4k23km10,所以m(4k21),由得4k21,4k210,4k219k2,所以k2,即k或k,所以实数k的取值范围是.1(多选)若椭圆C1:1(a1b10)和椭圆C2:1(a2b20)的焦点相同且a1a2,则以下结论中正确的是()A椭圆C1与椭圆C2一定没有公共点BCaabbDa1a2b1b2ACD由题意可得两椭圆的焦点均在x轴上,且abab,即有aabb,故C正确;由a1a2,可得b1b2,结合椭圆的对称性可得椭圆C1和椭圆C2一定没有公共点,故A正确;由aabb,得(a1a2)(a1a2)(b1b2)(b1b2),则,由a1b1,a2b2

9、,可得a1a2b1b2,则1,即有1,又b1b2,所以b1b20,所以a1a2b1b2,故D正确;由已知条件无法判断正确故选ACD.2(多选)设椭圆的方程为1,斜率为k的直线不经过原点O,而且与椭圆相交于A,B两点,M为线段AB的中点下列结论正确的是()A直线AB与OM垂直B若点M的坐标为(1,1),则直线方程为2xy30C若直线方程为yx1,则点M的坐标为D若直线方程为yx2,则|AB|BD对于A选项,根据椭圆的中点弦的性质得kABkOM21,所以A不正确;对于B选项,根据题意得,kOM1,又kABkOM2,所以kAB2,所以直线方程为y12(x1),即2xy30,所以B正确;对于C选项,若

10、直线方程为yx1,点M的坐标为,则kABkOM1442,所以C不正确;对于D选项,若直线方程为yx2,与椭圆方程1联立,消去y得2x2(x2)240,整理得3x24x0,解得x10,x2,所以|AB|0|,所以D正确3已知椭圆C的两个焦点为F1(1,0),F2(1,0),且经过点E.(1)求椭圆C的标准方程;(2)过F1的直线l与椭圆C交于A,B两点(点A位于x轴上方),若2,求直线l的斜率k的值解(1)设椭圆C的方程为1(ab0),由解得所以椭圆C的标准方程为1.(2)由题意得直线l的方程为yk(x1)(k0),联立整理得y2y90,则1440,设A(x1,y1),B(x2,y2),则y1y

11、2,y1y2,又2,所以y12y2,所以y1y22(y1y2)2,则34k28,解得k,又k0,所以k.1(2020湖州模拟)已知直线xmy2(mR)与椭圆1相交于A,B两点,则|AB|的最小值为_;若|AB|,则实数m的值是_1易知直线xmy2恒过点(2,0),而点(2,0)恰为椭圆1的右焦点,则|AB|的最小值即为通径长,联立,消去x得,(5m29)y220my250,设A(x1,y1),B(x2,y2),则y1y2,y1y2,则|AB|,解得m1.2已知椭圆C:1(ab0)过点P(2,),且两焦点与短轴的一个顶点的连线构成等腰直角三角形(1)求椭圆C的方程;(2)过(0,1)的直线l交椭

12、圆于A,B两点,试问:是否存在一个定点T,使得以线段AB为直径的圆恒过点T?若存在,求出点T的坐标;若不存在,请说明理由解(1)因为椭圆C的两焦点与短轴的一个顶点的连线构成等腰直角三角形,所以ab.所以椭圆C的方程为1.又椭圆C经过点P(2,),代入椭圆方程得b3.所以a3.故所求椭圆方程为1.(2)由已知动直线l过(0,1)点当l与x轴平行时,以AB为直径的圆的方程为x2(y1)216;当l与y轴重合时,以AB为直径的圆的方程为x2y29.所以两圆相切于点(0,3),即两圆只有一个公共点因此,所求点T如果存在,只能是点(0,3)以下证明以AB为直径的圆恒过点T(0,3)当l与x轴垂直时,以AB为直径的圆过点T(0,3)当l与x轴不垂直时,设l:ykx1.由得(2k21)x24kx160.由(0,1)在椭圆内部知0成立设A(x1,y1),B(x2,y2),则x1x2,x1x2.又(x1,y13),(x2,y23),所以x1x2(y13)(y23)x1x2(kx14)(kx24)(1k2)x1x24k(x1x2)16(1k2)4k160.所以TATB,即以AB为直径的圆恒过点T(0,3)所以存在一个定点T(0,3)满足条件.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3