收藏 分享(赏)

2020高考数学理二轮课标通用题型练7 大题专项(五) 解析几何综合问题 WORD版含解析.docx

上传人:高**** 文档编号:1127383 上传时间:2024-06-04 格式:DOCX 页数:6 大小:35.08KB
下载 相关 举报
2020高考数学理二轮课标通用题型练7 大题专项(五) 解析几何综合问题 WORD版含解析.docx_第1页
第1页 / 共6页
2020高考数学理二轮课标通用题型练7 大题专项(五) 解析几何综合问题 WORD版含解析.docx_第2页
第2页 / 共6页
2020高考数学理二轮课标通用题型练7 大题专项(五) 解析几何综合问题 WORD版含解析.docx_第3页
第3页 / 共6页
2020高考数学理二轮课标通用题型练7 大题专项(五) 解析几何综合问题 WORD版含解析.docx_第4页
第4页 / 共6页
2020高考数学理二轮课标通用题型练7 大题专项(五) 解析几何综合问题 WORD版含解析.docx_第5页
第5页 / 共6页
2020高考数学理二轮课标通用题型练7 大题专项(五) 解析几何综合问题 WORD版含解析.docx_第6页
第6页 / 共6页
亲,该文档总共6页,全部预览完了,如果喜欢就下载吧!
资源描述

1、题型练7大题专项(五)解析几何综合问题题型练第70页一、解答题1.设椭圆x2a2+y2b2=1(ab0)的左焦点为F,上顶点为B.已知椭圆的离心率为53,点A的坐标为(b,0),且|FB|AB|=62.(1)求椭圆的方程;(2)设直线l:y=kx(k0)与椭圆在第一象限的交点为P,且l与直线AB交于点Q.若|AQ|PQ|=524sinAOQ(O为原点),求k的值.解:(1)设椭圆的焦距为2c,由已知有c2a2=59,又由a2=b2+c2,可得2a=3b.由已知可得,|FB|=a,|AB|=2b.由|FB|AB|=62,可得ab=6,从而a=3,b=2.所以,椭圆的方程为x29+y24=1.(2

2、)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2).由已知有y1y20,故|PQ|sinAOQ=y1-y2.又因为|AQ|=y2sinOAB,而OAB=4,故|AQ|=2y2.由|AQ|PQ|=524sinAOQ,可得5y1=9y2.由方程组y=kx,x29+y24=1,消去x,可得y1=6k9k2+4.易知直线AB的方程为x+y-2=0,由方程组y=kx,x+y-2=0,消去x,可得y2=2kk+1.由5y1=9y2,可得5(k+1)=39k2+4,两边平方,整理得56k2-50k+11=0,解得k=12,或k=1128.所以,k的值为12或1128.2.已知椭圆C:x2a2+y2b

3、2=1(ab0)经过点1,32,离心率为32.(1)求椭圆C的方程;(2)不垂直于坐标轴的直线l与椭圆C交于A,B两点,以AB为直径的圆过原点,且线段AB的垂直平分线交y轴于点P0,-32,求直线l的方程.解:(1)由题意得ca=32,1a2+34b2=1,a2=b2+c2,解得a=2,b=1.故椭圆C的方程是x24+y2=1.(2)设直线l的方程为y=kx+t,设A(x1,y1),B(x2,y2),联立y=kx+t,x24+y2=1,消去y,得(1+4k2)x2+8ktx+4t2-4=0,则有x1+x2=-8kt1+4k2,x1x2=4t2-41+4k2.04k2+1t2,y1+y2=kx1

4、+t+kx2+t=k(x1+x2)+2t=2t1+4k2,y1y2=(kx1+t)(kx2+t)=k2x1x2+kt(x1+x2)+t2=k24t2-41+4k2+kt-8kt1+4k2+t2=t2-4k21+4k2.因为以AB为直径的圆过坐标原点,所以OAOB,x1x2+y1y2=0.因为x1x2+y1y2=4t2-41+4k2+t2-4k21+4k2=0,所以5t2=4+4k2.因为0,所以4k2+1t2,解得t32.又设A,B的中点为D(m,n),则m=x1+x22=-4kt1+4k2,n=y1+y22=t1+4k2.因为直线PD与直线l垂直,所以kPD=-1k=-32-n-m,得t1+

5、4k2=12.由t1+4k2=12,5t2=4+4k2,解得t1=1,t2=-35.当t=-35时,0不成立.当t=1时,k=12,所以直线l的方程为y=12x+1或y=-12x+1.3.设椭圆x2a2+y23=1(a3)的右焦点为F,右顶点为A.已知1|OF|+1|OA|=3e|FA|,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H.若BFHF,且MOAMAO,求直线l的斜率的取值范围.解:(1)设F(c,0),由1|OF|+1|OA|=3e|FA|,即1c+1a=3ca(a-c),可得a2

6、-c2=3c2,又a2-c2=b2=3,所以c2=1,因此a2=4.所以,椭圆的方程为x24+y23=1.(2)设直线l的斜率为k(k0),则直线l的方程为y=k(x-2).设B(xB,yB),由方程组x24+y23=1,y=k(x-2)消去y,整理得(4k2+3)x2-16k2x+16k2-12=0.解得x=2,或x=8k2-64k2+3,由题意得xB=8k2-64k2+3,从而yB=-12k4k2+3.由(1)知,F(1,0),设H(0,yH),有FH=(-1,yH),BF=9-4k24k2+3,12k4k2+3.由BFHF,得BFFH=0,所以4k2-94k2+3+12kyH4k2+3=

7、0,解得yH=9-4k212k.因此直线MH的方程为y=-1kx+9-4k212k.设M(xM,yM),由方程组y=k(x-2),y=-1kx+9-4k212k消去y,解得xM=20k2+912(k2+1).在MAO中,MOAMAO|MA|MO|,即(xM-2)2+yM2xM2+yM2,化简得xM1,即20k2+912(k2+1)1,解得k-64,或k64.所以,直线l的斜率的取值范围为-,-6464,+.4.已知抛物线C:y2=2px经过点P(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于点M,直线PB交y轴于点N.(1)求直线l的斜率的取值范围;(2

8、)设O为原点,QM=QO,QN=QO,求证:1+1为定值.答案:(1)解因为抛物线y2=2px经过点P(1,2),所以4=2p,解得p=2,所以抛物线的方程为y2=4x.由题意可知直线l的斜率存在且不为0,设直线l的方程为y=kx+1(k0).由y2=4x,y=kx+1,得k2x2+(2k-4)x+1=0.依题意,=(2k-4)2-4k210,解得k0或0kb0)的离心率为12,且圆x2+y2-2x-3y=0的圆心在椭圆C上.(1)求椭圆C的标准方程;(2)若直线y=mx+n与椭圆C只有一个公共点M,且与直线x=4相交于点N,问x轴上是否存在点P,使得以MN为直径的圆恒过点P?若存在,求出点P

9、的坐标;若不存在,请说明理由.解:(1)由e=12(其中e为椭圆C的离心率),得a2-b2a2=1-b2a2=12,即3a2=4b2.又圆x2+y2-2x-3y=0的圆心为1,32在椭圆C上,所以1a2+94b2=1.联立3a2=4b2,1a2+94b2=1,解得a2=4,b2=3.故椭圆C的标准方程为x24+y23=1.(2)联立y=mx+n,x24+y23=1,消去y,整理得(3+4m2)x2+8mnx+4n2-12=0.因为直线y=mx+n与椭圆C只有一个公共点M,所以=64m2n2-4(3+4m2)(4n2-12)=0,即n2=3+4m2.设点M的坐标为(xM,yM),则xM=-4mn3+4m2=-4mn,yM=mxM+n=3n,即M-4mn,3n.假设x轴上存在点P(t,0),使得以MN为直径的圆恒过点P.因为点N(4,4m+n),所以PM=-4mn-t,3n,PN=(4-t,4m+n).所以PMPN=-4mn-t(4-t)+3n(4m+n)=t2-4t+3+4mn(t-1)=0恒成立.所以t=1,t2-4t+3=0,即t=1.所以在x轴上存在点P(1,0),使得以MN为直径的圆恒过点P.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3