ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:265.50KB ,
资源ID:1126456      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1126456-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022版新高考数学一轮复习教师用书:第5章 第4节 数系的扩充与复数的引入 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2022版新高考数学一轮复习教师用书:第5章 第4节 数系的扩充与复数的引入 WORD版含解析.doc

1、数系的扩充与复数的引入考试要求1.理解复数的概念,理解复数相等的充要条件.2.了解复数的代数表示法及其几何意义.3.能进行复数代数形式的四则运算,了解两个具体复数相加、减的几何意义1复数的有关概念(1)复数的定义形如abi(a,bR)的数叫做复数,其中实部是a,虚部是b.(2)复数的分类(3)复数相等abicdiac且bd(a,b,c,dR)(4)共轭复数abi与cdi共轭ac且bd(a,b,c,dR)(5)复数的模向量的模叫做复数zabi的模,记作|z|或|abi|,即|z|abi|r(r0,a,bR)2复数的几何意义(1)复数zabi复平面内的点Z(a,b)(a,bR)(2)复数zabi(

2、a,bR)平面向量.3复数的运算(1)复数的加、减、乘、除运算法则设z1abi,z2cdi(a,b,c,dR),则加法:z1z2(abi)(cdi)(ac)(bd)i;减法:z1z2(abi)(cdi)(ac)(bd)i;乘法:z1z2(abi)(cdi)(acbd)(adbc)i;除法:i(cdi0)(2)复数加法的运算定律复数的加法满足交换律、结合律,即对任何z1,z2,z3C,有z1z2z2z1,(z1z2)z3z1(z2z3)1(1i)22i;i;i.2i4n1,i4n1i,i4n21,i4n3i(nN*)3z|z|2|2,|z1z2|z1|z2|,|zn|z|n.一、易错易误辨析(正

3、确的打“”,错误的打“”)(1)若aC,则a20.()(2)已知zabi(a,bR),当a0时,复数z为纯虚数()(3)复数zabi(a,bR)的虚部为bi.()(4)方程x2x10没有解()答案(1)(2)(3)(4)二、教材习题衍生1设z(1i)(2i),则复数z在复平面内所对应的点位于()A第一象限 B第二象限C第三象限 D第四象限Az(1i)(2i)3i,故复数z在复平面内所对应的点(3,1)位于第一象限2在复平面内,向量对应的复数是2i,向量对应的复数是13i,则向量对应的复数是()A12i B12iC34i D34iD13i2i34i,故选D.3设复数z满足i,则|z|等于()A1

4、 B C D2Ai,则zi,|z|1.4已知(12i)43i,则z_.2i由(12i)43i得2i. z2i. 考点一复数的有关概念 解决复数概念问题的方法及注意事项(1)求一个复数的实部与虚部,只需将已知的复数化为代数形式zabi(a,bR),则该复数的实部为a,虚部为b.(2)求一个复数的共轭复数,只需将此复数整理成标准的代数形式,实部不变,虚部变为相反数,即得原复数的共轭复数复数z1abi与z2cdi共轭ac,bd(a,b,c,dR)(3)复数是实数的条件:zabiRb0(a,bR);zRz;zRz20.(4)复数是纯虚数的条件:zabi是纯虚数a0且b0(a,bR);z是纯虚数z0(z

5、0);z是纯虚数z20.1(2020广州模拟)如果复数z,则()Az的共轭复数为1i Bz的虚部为iC|z|2 Dz的实部为1Dz1i,z的实部为1,故选D.2(2020大连模拟)设(12i)xxyi,其中x,y是实数,i为虚数单位,则()A1 B C DD由x2xixyi,x,yR,则y2x,|2i|,故选D.3如果复数是纯虚数,那么实数m等于()A1 B0 C0或1 D0或1D,因为此复数为纯虚数,所以解得m1或0,故选D. 考点二复数的运算 复数代数形式运算问题的解题策略(1)复数的加、减、乘法:复数的加、减、乘法类似于多项式的运算,可将含有虚数单位i的看作一类同类项,不含i的看作另一类

6、同类项,分别合并即可(2)复数的除法:除法的关键是分子分母同乘以分母的共轭复数,使分母实数化解题中要注意把i的幂写成最简形式典例1(1)对于两个复数1i,1i,有下列四个结论:1;i;1;220,其中正确结论的个数为()A1 B2 C3 D4(2)(2020武汉调研)已知复数z满足z|z|1i,则z()Ai Bi C1i D1i(1)C(2)B(1)(1i)(1i)2,不正确;i,正确;|i|1,正确;22(1i)2(1i)22i2i0,正确(2)设zabi(a,bR),则z|z|(a)bi1i,所以解得所以zi,故选B.点评:(1)在只含有z的方程中,z类似于代数方程中的x,可直接求解;(2

7、)在z,|z|中至少含有两个的复数方程中,可设zabi,a,bR,变换方程,利用两复数相等的充要条件得出关于a,b的方程组,求出a,b,从而得出复数z.1(2020全国卷)若(1i)1i,则z()A1i B1i Ci DiD (1i)1i,i,zi,故选D.2(2020全国卷)若z1i,则|z22z|()A0 B1 C D2D法一:z1i,|z22z|(1i)22(1i)|2i2i2|2|2.故选D.法二:z1i,|z22z|z|z2|1i|2.故选D. 考点三复数的几何意义 与复数几何意义相关的问题的一般解法典例2(1)(2019全国卷)设复数z满足|zi|1,z在复平面内对应的点为(x,y

8、),则()A(x1)2y21 B(x1)2y21Cx2(y1)21 Dx2(y1)21(2)(2020黄冈模拟)已知i是虚数单位,则复数在复平面上所对应的点的坐标为()A(0,1) B(1,0)C(1,0) D(0,1)(3)已知z(m3)(m1)i在复平面内对应的点在第四象限,则实数m的取值范围是()A(3,1) B(1,3)C(1,) D(,3)(1)C(2)A(3)A(1)由题意可知zxyi,所以|zi|x(y1)i|1.x2(y1)21.故选C.(2)i,该复数在复平面上所对应的点的坐标为(0,1),故选A.(3)由已知可得复数z在复平面内对应的点的坐标为(m3,m1),所以解得3m1

9、,故选A.点评:复平面内的点、向量及向量对应的复数是一一对应的,要求某个复数对应的点,只需确定复数的实部和虚部即可1.如图,在复平面内,复数z1,z2对应的向量分别是,则复数z1z2对应的点位于()A第一象限B第二象限C第三象限D第四象限D由已知(2,1),(0,1),所以z12i,z2i,z1z212i,它所对应的点为(1,2),在第四象限2(2020全国卷)设复数z1,z2满足|z1|z2|2,z1z2i,则|z1z2|_.2设z1x1y1i(x1,y1R),z2x2y2i(x2,y2R),则由|z1|z2|2,得xyxy4.因为z1z2x1x2(y1y2)ii,所以|z1z2|2(x1x2)2(y1y2)2xyxy2x1x22y1y282x1x22y1y2()2124,所以2x1x22y1y24,所以|z1z2|x1x2(y1y2)i|2.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3