1、课 时 跟 踪 检 测 基 础 达 标1已知数列an为等比数列,若a4a610,则a7(a12a3)a3a9的值为()A10B20C100D200解析:a7(a12a3)a3a9a7a12a7a3a3a9a2a4a6a(a4a6)2102100.答案:C2设等比数列an中,前n项和为Sn,已知S38,S67,则a7a8a9等于()A. B C. D.解析:因为a7a8a9S9S6,且S3,S6S3,S9S6也成等比数列,即8,1,S9S6成等比数列,所以8(S9S6)1,即S9S6,所以a7a8a9.答案:A3已知数列an满足log3an1log3an1(nN*),且a2a4a69,则log(
2、a5a7a9)的值是()A5 B C5 D.解析:log3an1log3an1,an13an,数列an是公比q3的等比数列a5a7a9q3(a2a4a6),log(a5a7a9)log(933)log355.答案:A4(2017届太原一模)在单调递减的等比数列an中,若a31,a2a4,则a1()A2 B4 C. D2解析:在等比数列an中,a2a4a1,又a2a4,数列an为递减数列,所以a22,a4,所以q2,所以q,a14.答案:B5(2017届莱芜模拟)已知数列an,bn满足a1b13,an1an3,nN*,若数列cn满足cnb,则c2 017()A92 016 B272 016 C9
3、2 017 D272 017解析:由已知条件知an是首项为3,公差为3的等差数列,数列bn是首项为3,公比为3的等比数列,所以an3n,bn3n.又cnban33n,所以c2 017332 017272 017.答案:D6(2017届海口市调研测试)设Sn为等比数列an的前n项和,a28a50,则的值为()A. B. C2 D17解析:设an的公比为q,依题意得q3,因此q.注意到a5a6a7a8q4(a1a2a3a4),即有S8S4q4S4,因此S8(q41)S4,q41,选B.答案:B7(2017届衡阳模拟)在等比数列an中,a12,前n项和为Sn,若数列an1也是等比数列,则Sn()A2
4、n12 B3nC2n D3n1解析:因为等比数列an为等比数列,a12,设其公比为q,则an2qn1,因为数列an1也是等比数列,所以(an11)2(an1)(an21)a2an1anan2anan2anan22an1an(1q22q)0q1,即an2,所以Sn2n.故选C.答案:C8(2018届广州市五校联考)已知数列an的首项a12,数列bn为等比数列,且bn,若b10b112,则a21()A29 B210 C211 D212解析:由bn,且a12,得b1,a22b1;b2,a3a2b22b1b2;b3,a4a3b32b1b2b3;,an2b1b2b3bn1,所以a212b1b2b3b20
5、.又bn为等比数列,所以a212(b1b20)(b2b19)(b10b11)2(b10b11)10211.答案:C9由正数组成的等比数列an满足a3a832,则log2a1log2a2log2a10_.解析:log2a1log2a2log2a10log2(a1a10)(a2a9)(a5a6)log2(a3a8)5log222525.答案:2510设Sn为等比数列an的前n项和若a11,且3S1,2S2,S3成等差数列,则an_.解析:因为3S1,2S2,S3成等差数列,所以4S23S1S3,即4(a1a2)3a1a1a2a3,化简得3,即等比数列an的公比q3,故an13n13n1.答案:3n
6、111(2017届南昌模拟)已知公比不为1的等比数列an的首项a1,前n项和为Sn,且a4S4,a5S5,a6S6成等差数列(1)求等比数列an的通项公式;(2)对nN*,在an与an1之间插入3n个数,使这3n2个数成等差数列,记插入的这3n个数的和为bn,求数列bn的前n项和Tn.解:(1)因为a4S4,a5S5,a6S6成等差数列,所以a5S5a4S4a6S6a5S5,即2a63a5a40,所以2q23q10.因为q1,所以q,所以等比数列an的通项公式为an.(2)bn3nn,Tn.12设数列an的前n项和为Sn,nN*.已知a11,a2,a3,且当n2时,4Sn25Sn8Sn1Sn1
7、.(1)求a4的值;(2)证明:为等比数列解:(1)当n2时,4S45S28S3S1,即4581,解得a4.(2)证明:由4Sn25Sn8Sn1Sn1(n2),得4Sn24Sn1SnSn14Sn14Sn(n2),即4an2an4an1(n2)4a3a14164a2,4an2an4an1(n1),数列是以a2a11为首项,为公比的等比数列能 力 提 升1若an是正项递增等比数列,Tn表示其前n项之积,且T10T20,则当Tn取最小值时,n的值为_解析:T10T20a11a201(a15a16)51a15a161,又an是正项递增等比数列,所以0a1a2a14a151a16a17,因此当Tn取最小
8、值时,n的值为15.答案:152(2018届海口调研)设数列an的前n项和为Sn,且a11,anan1(n1,2,3,),则S2n3_.解析:依题意得S2n3a1(a2a3)(a4a5)(a2n2a2n3)1.答案:3已知数列an满足a15,a25,an1an6an1(n2)(1)求证:an12an是等比数列;(2)求数列an的通项公式解:(1)证明:an1an6an1(n2),an12an3an6an13(an2an1)(n2)a15,a25,a22a115,an2an10(n2),3(n2),数列an12an是以15为首项,3为公比的等比数列(2)由(1)得an12an153n153n,则an12an53n,an13n12(an3n)又a132,an3n0,an3n是以2为首项,2为公比的等比数列,an3n2(2)n1,即an2(2)n13n.