1、教学目标:知识与技能 通过具体实例了解幂函数的图象和性质,并能进行简单的应用过程与方法 能够类比研究一般函数、指数函数、对数函数的过程与方法,来研究幂函数的图象和性质情感、态度、价值观 体会幂函数的变化规律及蕴含其中的对称性教学重点:重点 从五个具体幂函数中认识幂函数的一些性质难点 画五个具体幂函数的图象并由图象概括其性质,体会图象的变化规律教学程序与环节设计:创设情境组织探究尝试练习巩固反思作业回馈课外活动问题引入幂函数的图象和性质幂函数性质的初步应用复述幂函数的图象规律及性质幂函数性质的初步应用利用图形计算器或计算机探索一般幂函数的图象规律材料一:幂函数定义及其图象一般地,形如的函数称为幂
2、函数,其中为常数幂函数的定义来自于实践,它同指数函数、对数函数一样,也是基本初等函数,同样也是一种“形式定义”的函数,引导学生注意辨析下面我们举例学习这类函数的一些性质作出下列函数的图象:利用所学知识和方法尝试作出五个具体幂函数的图象,观察所图象,体会幂函数的变化规律(1);(2);(3);(4);(5) 定义域值域奇偶性单调性定点解 列表(略) 图象师:引导学生应用画函数的性质画图象,如:定义域、奇偶性师生共同分析,强调画图象易犯的错误材料二:幂函数性质归纳(1)所有的幂函数在(0,+)都有定义,并且图象都过点(1,1);(2)时,幂函数的图象通过原点,并且在区间上是增函数特别地,当时,幂函
3、数的图象下凸;当时,幂函数的图象上凸;(3)时,幂函数的图象在区间上是减函数在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴例1、求下列函数的定义域;例2、比较下列两个代数值的大小: 讨论函数的定义域、奇偶性,作出它的图象,并根据图象说明函数的单调性练习、1利用幂函数的性质,比较下列各题中两个幂的值的大小:(1),;(2),;(3),;(4),2作出函数的图象,根据图象讨论这个函数有哪些性质,并给出证明3作出函数和函数的图象,求这两个函数的定义域和单调区间4用图象法解方程:(1); (2)1如图所示,曲线是幂函数在第一象限内的图象,已知分别取四个值,则相应图象依次为: 2在同一坐标系内,作出下列函数的图象,你能发现什么规律?(1)和;(2)和