1、学习目标 1.理解两个函数的和(或差)的导数法则,学会用法则求一些函数的导数;2.理解两个函数的积的导数法则,学会用法则求乘积形式的函数的导数.重点:记住8个公式3个法则难点:8个公式3个法则的理解学习过程 一、课前准备预习教材后,疑惑之处:复习1:常见函数的导数公式:; ;且;.复习2:根据常见函数的导数公式计算下列导数(1) (2) (3)(4) 二、新课导学学习探究探究任务:两个函数的和(或差)积商的导数新知: 试试:根据基本初等函数的导数公式和导数运算法则,求函数的导数. 典型例题例1 假设某国家在20年期间的年均通贷膨胀率为5%,物价(单位:元)与时间(单位:年)有如下函数关系,其中
2、为时的物价.假定某种商品的,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?变式:如果上式中某种商品的,那么在第10个年头,这种商品的价格上涨的速度大约是多少? 例2 日常生活中的饮用水通常是经过净化的. 随着水纯净度的提高,所需净化费用不断增加. 已知将1吨水净化到纯净度为时所需费用(单位:元)为. 求净化到下列纯净度时,所需净化费用的瞬时变化率:(1)90%; (2)98%. 小结:函数在某点处导数的大小表示函数在此点附近变化的快慢.动手试试练1. 求下列函数的导数:(1); (2);(3); (4).来源:学|科|网练2. 求下列函数的导数:(1);(2);(3
3、) 三、总结提升 学习小结1由常数函数、幂函数及正、余弦函数经加、减、乘运算得到的简单的函数均可利用求导法则与导数公式求导,而不需要回到导数的定义去求此类简单函数的导数. 2对于函数求导,一般要遵循先化简,再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用.在实施化简时,首先要注意化简的等价性,避免不必要的运算失误.知识拓展 1复合函数的导数:设函数在点x处有导数,函数y=f(u)在点x的对应点u处有导数,则复合函数在点x处也有导数,且 2复合函数求导的基本步骤是:分解求导相乘回代学习评价当堂检测(时量:5分钟 满分:10分)计分:1. 函数的导数是( )A B C D2.函数的导数是( )A B C D3. 的导数是( )A B C D4. 函数,且,则= 5.曲线在点处的切线方程为 课后作业 已知函数. (1)求这个函数的导数;(2)求这个函数在点处的切线方程.