1、不等式的性质 教材分析这节的主要内容是不等式的概念、不等式与实数运算的关系和不等式的性质这部分内容是不等式变形、化简、证明的理论依据及基础教材通过具体实例,让学生感受现实生活中存在大量的不等关系在不等式与实数运算的关系基础上,系统归纳和论证了不等式的一系列性质教学重点是比较两个实数大小的方法和不等式的性质,教学难点是不等式性质的证明及其应用教学目标1. 通过具体情境,让学生感受现实世界和日常生活中存在着大量的不等关系,理解不等关系与不等式的联系,会用不等式表示不等关系2. 理解并掌握比较两个实数大小的方法3. 引导学生归纳和总结不等式的性质,并利用比较实数大小的方法论证这些性质,培养学生的合情
2、推理和逻辑论证能力任务分析这节内容从实际问题引入不等关系,进而用不等式来表示不等关系,自然引出不等式的基本性质为了研究不等式的性质,首先学习比较两实数大小的方法,这是论证不等式性质的基本出发点,故必须让学生明确在教师的引导下学生基本上可以归纳总结出不等式的一系列性质,但对于这些性质的证明有些学生认为没有必要或对论证过程感到困惑,为此,必须明确论证性质的方法和要点,同时引导学生认识到数学中的定理、法则等,通常要通过论证才予以认可,培养学生的数学理性精神教学设计一、问题情境教师通过下列三个现实问题创设不等式的情境,并引导学生思考1. 公路上限速40kmh的路标,指示司机在前方行驶时,应使汽车的速度
3、v不超过40kmh,用不等式表达即为v40kmh2. 某种杂志以每本2.5元的价格销售,可以售出8万本据市场调查,若杂志的单价每提高0.1元,销售量就可能相应减少2000本若把提价后杂志的定价改为x元,怎样用不等式表示销售的总收入的不低于20万元?x800002000(x25)2000003. 某钢铁厂要把长度为4000mm的钢管截成500mm和600mm两种,按照生产的要求,600mm钢管的数量不能超过500mm的3倍,试写出满足上述所有不等关系的不等式设600mm钢管的数量为x,500mm的数量为y,则通过上述实例,说明现实世界中,不等关系是十分丰富的,为了解决这些问题,须要我们学习不等式
4、及基本性质二、建立模型1. 教师精讲,分析我们知道,实数与数轴上的点是一一对应的,在数轴上不同的两点中,右边的点表示的实数比左边的点表示的实数大,用不等式表示为,即减去所得的差是一个大于0的数一般地,设,R,则0,0,0由此可见,要比较两个实数的大小,只要考查它们的差就可以了例如,比较(3)(5)与(2)(4)的大小就可以作差变形,然后判断符号2. 通过问题或复习,引导学生归纳和总结不等式的性质(1)对于“甲的年龄大于乙的年龄”,你能换一种不同的叙述方式吗?(2)如果甲的身高比乙高,乙的身高比丙高,你能得出甲与丙哪个高吗?(3)回忆初中已学过的不等式的性质,试用字母把它们表示出来用数学符号表示
5、出上面的问题,便可得出不等式的一些性质:定理1如果,那么;如果,那么定理2如果,且,那么定理3如果,那么定理4如果,且,那么;如果,且,那么3. 定理14的证明关于定理14的证明要注意:(1)定理为什么要证明?(2)证明定理的主要依据或出发点是什么?(3)定理的证明要规范,每步推理要有根据(4)关于定理3的推论,定理4的推论1,可由学生独立完成证明4. 考虑定理4的推论2:“如果,那么nn(N,且0)”的逆命题,得出定理5定理5如果,那么(N,且1)由于直接证明定理5较困难,故可考虑运用反证法三、解释应用例题1. 已知,求证:证法1:,0又,0()()()()0,证法2:,又,练习1. 判断下
6、列命题的真假,并说明理由(1)如果22,那么(2)如果,那么四、拓展延伸1. 如果3042,1624,求,2及的取值范围2. 如果11,22,33,nn,那么123n123n吗?为什么?3. 如果0,那么吗?(其中为正有理数)点评这篇案例从实际问题引入不等关系,由如何求非不等关系引入不等式的求法,进而点出教学的主题不等式性质,由学生熟悉的实数性质,及现实生活中的常识,将语言表达转化为数学符号的一般表示,进而得出不等式的常见性质通过对不等式的证明,使学生理解对数学定理证明的必要性,增强学生的逻辑推理能力就整个教学设计的效果看,这种设计是成功的,尤其是由定理的应用,达到了对性质的理解和升华,巩固了教学的重点,效果比较理想此外,这篇案例也十分关注由学生自主探究去开发其潜在能力,培养其发散思维能力总之,这是一篇成功的教学设计案例,美中不足的是,对文初创设的现实情景利用的力度稍欠缺