1、课时跟踪检测(十五)导数与函数的极值、最值一抓基础,多练小题做到眼疾手快1(2016岳阳一模)下列函数中,既是奇函数又存在极值的是()Ayx3Byln (x)Cyxex Dyx解析:选D由题可知,B,C选项中的函数不是奇函数,A选项中,函数yx3单调递增(无极值),而D选项中的函数既为奇函数又存在极值2函数f(x)ln xx在区间(0,e上的最大值为()A1e B1Ce D0解析:选B因为f(x)1,当x(0,1)时,f(x)0;当x(1,e时,f(x)0,所以f(x)的单调递增区间是(0,1),单调递减区间是(1,e,所以当x1时,f(x)取得最大值ln 111.3当函数yx2x取极小值时,
2、x()A. BCln 2 Dln 2解析:选B令y2xx2xln 20,x.4若函数f(x)x32cx2x有极值点,则实数c的取值范围为()A.B.C.D.解析:选D若函数f(x)x32cx2x有极值点,则f(x)3x24cx10有根,故(4c)2120,从而c或c.故实数c的取值范围为.5已知函数f(x)的定义域为(a,b),导函数f(x)在(a,b)上的图象如图所示,则函数f(x)在(a,b)上的极大值点的个数为()A1 B2C3 D4解析:选B由函数极值的定义和导函数的图象可知,f(x)在(a,b)上与x轴的交点个数为4,但是在原点附近的导数值恒大于零,故x0不是函数f(x)的极值点,其
3、余的3个交点都是极值点,其中有2个点满足其附近的导数值左正右负,故极大值点有2个二保高考,全练题型做到高考达标1函数f(x)x2ln x的最小值为()A. B1C0 D不存在解析:选Af(x)x,且x0.令f(x)0,得x1;令f(x)0,得0x1.f(x)在x1处取得极小值也是最小值,且f(1)ln 1.2已知函数f(x)x3ax2bxa27a在x1处取得极大值10,则的值为()A B2C2或 D2或解析:选A由题意知,f(x)3x22axb,f(1)0,f(1)10,即解得或经检验满足题意,故.3(2016浙江瑞安中学月考)已知函数f(x)x3bx2cx的图象如图所示,则xx等于()A.
4、B.C. D.解析:选C由图象可知f(x)的图象过点(1,0)与(2,0),x1,x2是函数f(x)的极值点,因此1bc0,84b2c0,解得b3,c2,所以f(x)x33x22x,所以f(x)3x26x2.x1,x2是方程f(x)3x26x20的两根,因此x1x22,x1x2,所以xx(x1x2)22x1x24.4设函数f(x)ax2bxc(a,b,cR)若x1为函数f(x)ex的一个极值点,则下列图象不可能为yf(x)图象的是()解析:选D因为f(x)exf(x)exf(x)(ex)f(x)f(x)ex,且x1为函数f(x)ex的一个极值点,所以f(1)f(1)0;选项D中,f(1)0,f
5、(1)0,不满足f(1)f(1)0.5若函数f(x)x3x2在区间(a,a5)上存在最小值,则实数a的取值范围是()A5,0) B(5,0)C3,0) D(3,0)解析:选C由题意,f(x)x22xx(x2),故f(x)在(,2),(0,)上是增函数,在(2,0)上是减函数,作出其图象如图所示,令x3x2得,x0或x3,则结合图象可知,解得a3,0),故选C.6函数f(x)x3x23x4在0,2上的最小值是_解析:f(x)x22x3,令f(x)0得x1(x3舍去),又f(0)4,f(1),f(2),故f(x)在0,2上的最小值是f(1).答案:7(2016广州模拟)已知f(x)x33ax2bx
6、a2在x1 时有极值0,则ab_.解析:由题意得f(x)3x26axb,则解得或经检验当a1,b3时,函数f(x)在x1处无法取得极值,而a2,b9满足题意,故ab7.答案:78函数f(x)x33axb(a0)的极大值为6,极小值为2,则f(x)的单调递减区间是_解析:令f(x)3x23a0,得x,则f(x),f(x)随x的变化情况如下表:x(,)(,)(,)f(x)00f(x)极大值极小值从而解得所以f(x)的单调递减区间是(1,1)答案:(1,1)9已知函数f(x)x1(aR,e为自然对数的底数)(1)若曲线yf(x)在点(1,f(1)处的切线平行于x轴,求a的值;(2)求函数f(x)的极
7、值解:(1)由f(x)x1,得f(x)1.又曲线yf(x)在点(1,f(1)处的切线平行于x轴,得f(1)0,即10,解得ae.(2)f(x)1,当a0时,f(x)0,f(x)为(,)上的增函数,所以函数f(x)无极值当a0时,令f(x)0,得exa,即xln ax(,ln a)时,f(x)0;x(ln a,)时,f(x)0,所以f(x)在(,ln a)上单调递减,在(ln a,)上单调递增,故f(x)在xln a处取得极小值,且极小值为f(ln a)ln a,无极大值综上,当a0时,函数f(x)无极值;当a0时,f(x)在xln a处取得极小值ln a,无极大值10已知函数f(x)(1)求f
8、(x)在区间(,1)上的极小值和极大值点;(2)求f(x)在1,e(e为自然对数的底数)上的最大值解:(1)当x1时,f(x)3x22xx(3x2),令f(x)0,解得x0或x.当x变化时,f(x),f(x)的变化情况如下表:x(,0)0f(x)00f(x)极小值极大值故当x0时,函数f(x)取得极小值为f(0)0,函数f(x)的极大值点为x.(2)当1x1时,由(1)知,函数f(x)在1,0和上单调递减,在上单调递增因为f(1)2,f ,f(0)0,所以f(x)在1,1)上的最大值为2.当1xe时,f(x)aln x,当a0时,f(x)0;当a0时,f(x)在1,e上单调递增,则f(x)在1
9、,e上的最大值为f(e)a.综上所述,当a2时,f(x)在1,e上的最大值为a;当a2时,f(x)在1,e上的最大值为2.三上台阶,自主选做志在冲刺名校1已知f(x)x36x29xabc,abc,且f(a)f(b)f(c)0.现给出如下结论:f(0)f(1)0; f(0)f(1)0;f(0)f(3)0; f(0)f(3)0.其中正确结论的序号是_解析:f(x)3x212x93(x1)(x3),由f(x)0,得1x3,由f(x)0,得x1或x3,f(x)在区间(1,3)上是减函数,在区间(,1),(3,)上是增函数又abc,f(a)f(b)f(c)0,y极大值f(1)4abc0,y极小值f(3)
10、abc0.0abc4.a,b,c均大于零,或者a0,b0,c0.又x1,x3为函数f(x)的极值点,后一种情况不可能成立,如图f(0)0.f(0)f(1)0,f(0)f(3)0.正确结论的序号是.答案:2(2016武汉调研)已知函数f(x)ax2bxln x(a0,bR)(1)设a1,b1,求f(x)的单调区间;(2)若对任意的x0,f(x)f(1),试比较ln a与2b的大小解:(1)由f(x)ax2bxln x,x(0,),得f(x).a1,b1,f(x)(x0)令f(x)0,得x1.当0x1时,f(x)0,f(x)单调递减;当x1时,f(x)0,f(x)单调递增f(x)的单调递减区间是(0,1),f(x)的单调递增区间是(1,)(2)由题意可知,f(x)在x1处取得最小值,即x1是f(x)的极值点,f(1)0,2ab1,即b12a.令g(x)24xln x(x0),则g(x).令g(x)0,得x.当0x时,g(x)0,g(x)单调递增,当x时,g(x)0,g(x)单调递减,g(x)g1ln 1ln 40,g(a)0,即24aln a2bln a0,故ln a2b.