1、真题感悟1(2014广东卷)如图,在平行四边形ABCD中,点E在AB上且EB2AE,AC与DE交于点F,则_.解析易证AEFCDF,且3AECD,3.答案32(2014湖北卷)如图,P为O外一点,过P点作O的两条切线,切点分别为A,B.过PA的中点Q作割线交O于C,D两点若QC1,CD3,则PB_.解析由题意QA2QCQD1(13)4,QA2,PA4,PAPB,PB4.答案43(2014湖南卷)如图,已知AB,BC是O的两条弦,AOBC,AB,BC2,则O的半径等于_解析连接OB,设OA与BC的交点为D,半径为R,则ODR1,在RtOBD中,由勾股定理,得R22(R1)2,R.答案4(2014
2、重庆卷)过圆外一点P作圆的切线PA(A为切点),再作割线PBC依次交圆于B,C.若PA6,AC8,BC9,则AB_.解析由切割线定理得PA2PBPCPB(PBBC),即62PB(PB9),解得PB3(负值舍去)由弦切角定理知PABPCA,又APBCPA,故APBCPA,则,即,解得AB4.答案4考点整合1(1)相似三角形的判定定理判定定理1:对于任意两个三角形,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似判定定理2:对于任意两个三角形,如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似判定定理3:对于任意两个三角形,如果一个三角
3、形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似(2)相似三角形的性质相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方(3)直角三角形的射影定理:直角三角形中,每一条直角边是这条直角边在斜边上的射影与斜边的比例中项;斜边上的高是两直角边在斜边上射影的比例中项2(1)圆周角定理:圆上一条弧所对的圆周角等于它所对的圆心角的一半(2)圆心角定理:圆心角的度数等于它所对弧的度数3(1)圆内接四边形的性质定理:圆的内接四边形的对角互补;圆内接四边形的外角等于它的内角的对角(2)圆内接四边形判定定理:如果一个
4、四边形的对角互补,那么这个四边形的四个顶点共圆4(1)圆的切线的性质定理:圆的切线垂直于经过切点的半径(2)圆的切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线(3)弦切角定理:弦切角等于它所夹的弧所对的圆周角(4)相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等(5)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项5证明等积式成立,应先把它写成比例式,找出比例式中给出的线段所在三角形是否相似,若不相似,则进行线段替换或等比替换6圆幂定理与圆周角、弦切角联合应用时,要注意找相等的角,找相似三角形,从而得出线段的比由于圆幂定理涉及圆中线段的数量计算,所以应注意代数法在解题中的应用.