1、第二节平面向量基本定理及坐标表示全盘巩固1已知向量a(1,1),b(2,x),若ab与4b2a平行,则实数x的值是()A2 B0 C1 D2解析:选D依题意得ab(3,x1),4b2a(6,4x2)ab与4b2a平行,3(4x2)6(x1),解得x2.2(2014朝阳模拟)在ABC中,M为边BC上任意一点,N为AM中点,则的值为()A. B. C. D1解析:选AM为边BC上任意一点,可设xy (xy1)N为AM中点,xy.(xy).3(2014西安模拟)已知向量(1,3),(2,1),(k1,k2),若A,B,C三点不能构成三角形,则实数k应满足的条件是()Ak2 Bk Ck1 Dk1解析:
2、选C若点A,B,C不能构成三角形,则向量,共线,(2,1)(1,3)(1,2),(k1,k2)(1,3)(k,k1),1(k1)2k0,解得k1.4(2014嘉兴模拟)若,是一组基底,向量xy(x,yR),则称(x,y)为向量在基底,下的坐标,现已知向量a在基底p(1,1),q(2,1)下的坐标为(2,2),则a在另一组基底m (1,1),n(1,2)下的坐标为()A(2,0) B(0,2) C(2,0) D(0,2)解析:选D由题意,a2p2q(2,2)(4,2)(2,4)设a在基底m,n下的坐标为(,),则a(1,1)(1,2)(,2)(2,4)故解得即坐标为(0,2)5设点A(2,0),
3、B(4,2),若点P在直线AB上,且|2|,则点P的坐标为()A(3,1) B(1,1)C(3,1)或(1, 1) D无数多个解析:选C设P(x,y),由点P在直线AB上,且|2|,得2,或2,而(2,2),(x2,y),故(2,2)2(x2,y),解得x3,y1,此时点P的坐标为(3,1);或(2,2)2(x2,y),解得x1,y1,此时点P的坐标为(1,1)6设向量a(1,3),b(2,4),c(1,2),若表示向量4a,4b2c,2(ac),d的有向线段首尾相连能构成四边形,则向量d为()A(2,6) B(2,6)C(2,6) D(2,6)解析:选D设d(x,y),由题意知4a(4,12
4、),4b2c(6,20),2(ac)(4,2),又4a4b2c2(ac)d0,所以(4,12)(6,20)(4,2)(x,y)0,解得x2,y6,所以d(2,6)7已知A(3,0),B(0,),O为坐标原点,C在第二象限,且AOC30,则实数的值为_解析:由题意知(3,0),(0,),则(3,),由AOC30知以x轴的非负半轴为始边,OC为终边的一个角为150,则tan 150,即,故1.答案:18在平面直角坐标系xOy中,四边形ABCD的边ABDC,ADBC.已知点A(2,0),B(6,8),C(8,6),则D点的坐标为_解析:由条件中的四边形ABCD的对边分别平行,可以判断该四边形ABCD
5、是平行四边形设D(x,y),则有,即(6,8)(2,0)(8,6)(x,y),解得(x,y)(0,2),即D点的坐标为(0,2)答案:(0,2)9. (2014金华模拟)如图,在ABC中,P是BN上的一点,若m,则实数m的值为_解析:因为kk()k(1k) ,k为实数,且m,所以1km,解得k,m.答案:10已知a(1,2),b(3,2),当k为何值时,kab与a3b平行?平行时它们是同向还是反向?解:kabk(1,2)(3,2)(k3,2k2),a3b(1,2)3(3,2)(10,4),当kab与a3b平行时,存在唯一实数使kab(a3b),由(k3,2k2)(10,4),得解得k,当k时,
6、kab与a3b平行,这时kabab(a3b)0,kab与a3b反向11已知O(0,0),A(1,2),B(4,5)及t,求:(1)t为何值时,P在x轴上?P在y轴上?P在第二象限?(2)四边形OABP能否成为平行四边形?若能,求出相应的t值;若不能,请说明理由解:(1) t(13t,23t)若P在x轴上,则23t0,t;若P在y轴上,则13t0,t;若P在第二象限,则t.(2)(1,2),(33t,33t)若OABP为平行四边形,则.无解,四边形OABP不能成为平行四边形12平面内给定三个向量a(3,2),b(1,2),c(4,1)(1)求满足ambnc的实数m,n;(2)若(akc)(2ba
7、),求实数k;(3)若d满足(dc)(ab),且|dc|,求d.解:(1)由题意得(3,2)m(1,2)n(4,1),得(2)akc(34k,2k),2ba(5,2),2(34k)(5) (2k)0,k.(3)设d(x,y),dc(x4,y1),ab(2,4),由题意得得或故d(3,1)或(5,3)冲击名校1在ABC中,角A,B,C所对的边分别为a,b,c,m(bc,cos C),n(a,cos A),mn,则cos A的值等于()A. B. C. D.解析:选Cmn(bc)cos Aacos C0,再由正弦定理得 sin Bcos Asin Ccos Acos Csin Asin Bcos
8、Asin(CA)sin B,即cos A.2已知A(7,1)、B(1,4),直线yax与线段AB交于C,且2,则实数a等于()A2 B1 C. D.解析:选A设C(x,y),则(x7,y1),(1x,4y),2,解得C(3,3)又C在直线yax上,3a3,a2. 高频滚动1已知ABC的三个顶点A,B,C及平面内一点P满足,则点P与ABC的关系为()AP在ABC内部BP在ABC外部CP在AB边所在直线上DP是AC边的一个三等分点解析:选D,22,P是AC边的一个三等分点2.如图,在ABC中,点O是BC的中点过点O的直线分别交直线AB,AC于不同的两点M,N,若m,n,则mn的值为_解析:连接AO,则(),M,O,N三点共线,1,mn2.答案:2