ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:298.50KB ,
资源ID:1113116      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1113116-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2015高考数学(通用版)二轮复习课时训练:专题1 第4讲 函数与方程、函数的应用.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2015高考数学(通用版)二轮复习课时训练:专题1 第4讲 函数与方程、函数的应用.doc

1、专题一第四讲一、选择题1(文)函数f(x)log2x的一个零点落在区间()A(0,1)B(1,2)C(2,3)D(3,4)答案B解析f(1)f(2)0,选B.(理)在用二分法求方程x32x10的一个近似解时,现在已经将一根锁定在区间(1,2)内,则下一步可断定该根所在的区间为()A(1.4,2)B(1.1,4)C(1,)D(,2)答案D解析令f(x)x32x1,则f(1)20,f()0,选D.2若x0是方程xx的解,则x0属于区间()A.B.C.D.答案C解析令f(x)xx,f(1)10,f0,f0,f(x)在区间内有零点3利民工厂某产品的年产量在150t至250t之间,年生产的总成本y(万元

2、)与年产量x(t)之间的关系可近似地表示为y30x4000,则每吨的成本最低时的年产量为()A240B200C180D160答案B解析依题意得每吨的成本是30,则23010,当且仅当,即x200时取等号,因此当每吨的成本最低时,相应的年产量是200t,选B.4(2014山东理,8)已知函数f(x)|x2|1,g(x)kx,若方程f(x)g(x)有两个不相等的实根,则实数k的取值范围是()A(0,)B(,1)C(1,2)D(2,)答案B解析作出函数yf(x)的图象如图,当ykx在l1位置时,过A(2,1),k,在l2位置时与l3平行,k1,k0,则a的取值范围为()A(2,)B(1,)C(,2)

3、D(,1)答案C解析f (x)3ax26x3x(ax2),若a0,则f(x)在(,0)和(,)上单调递增,在(0,)上单调递减,又f(0)1,f(x)不可能存在唯一零点;由选项知a0不必考虑;a0,应有极小值f()0,即a()33()210,a1,即此时,ycosx与yx的图象必无交点;当x时,ycosx1.yx1,即此时ycosx与yx的图象必无交点,结合图象可知,它们的图象只有唯一公共点(,0),即方程cosxx有唯一解x,因此方程f(x)所有的实根和等于,故选C.二、填空题8(2013济宁模拟)已知定义域为R的函数f(x)既是奇函数,又是周期为3的周期函数,当x(0,)时,f(x)sin

4、x,则函数f(x)在区间0,6上的零点个数是_答案7解析易知在(,)内,有f(1)0,f(0)0,f(1)0,即f(x)在一个周期内有3个零点,又区间0,6包含f(x)的2个周期,而两端点都是f(x)的零点,故f(x)在0,6内有7个零点9已知函数f(x)()xlog3x,若x0是函数yf(x)的零点,且0x1”、“解析解法1:f(x)()xlog3x在(0,)上为减函数,且0x1f(x0)解法2:如图知,f(x1)f(x0)10设函数yx3与y()x2的图象的交点为(x0,y0)若x0所在的区间是(n,n1)(nZ),则n_.答案1解析由函数图象知,1x00时,yf(x)与ylog3x的图象

5、有2个交点,又ylog3|x|为偶函数,两函数图象交点有4个(理)(2014银川市一中二模)现有四个函数:yxsinx;yxcosx;yx|cosx|;yx2x的图象(部分)如下:则按照从左到右图象对应的函数序号安排正确的一组是()ABCD答案A解析yxsinx为偶函数,对应第一个图;yxcosx为奇函数,且x0时,y可正可负,对应第三个图;yx|cosx|为奇函数,且x0时,y0,对应第四个图;yx2x为增函数,对应第二个图,故选A.12(2014百校联考)已知函数f(x)是定义在R上的偶函数,f(x1)为奇函数,f(0)0,当x(0,1时,f(x)log2x,则在(8,10)内满足方程f(

6、x)1f(1)的实数x为()A.B9C.D.答案C解析由条件知f(x)f(x),f(x1)f(x1),在式中给x赋值x1得f(x)f(x2),将代入得f(x2)f(x),f(x4)f(x),f(x)的周期为4.在中令x0得f(1)0,方程f(x)1f(1),化为f(x)1,由于f(x)的图象关于点(1,0)对称,当0x1时,f(x)log2x0,当1x0,令f(x)1,(0xBaCa0时,f(x)没有零点当x0时,f (x)x24,令f (x)0得x2,所以f(x)在(0,2)上递减,在(2,)上递增,因此f(x)在x2处取得极小值f(2)a0,解得a.故选A.14(2013天津南开中学月考)

7、已知定义域为(1,1的函数f(x),对任意x(1,0,f(x1),当x0,1时,f(x)x,若在区间(1,1内g(x)f(x)mxm有两个零点,则实数m的取值范围是()A0,)B,)C0,)D(0,答案D解析x(1,0时,x1(0,1,又x0,1时,f(x)x,f(x1)x1,又f(x1),x(1,0时,f(x)1,作出函数f(x)的图象,由于ym(x1)过定点(1,0),要使ym(x1)与yf(x)的图象有两个交点,应有0m,选D.15(文)(2013黄浦区模拟)如果函数y|x|2的图象与曲线C:x2y24恰好有两个不同的公共点,则实数的取值范围是()A1,1)B1,0C(,10,1)D1,

8、0(1,)答案A解析y与圆x2y24有三个不同公共点,当01时,不满足;当0时,曲线C为焦点在x轴上的双曲线,其渐近线斜率k,由题意应有1,10,综上知11.(理)(2013绍兴市模拟)已知函数f(x)若方程f(x)t(tR)有四个不同的实数根x1、x2、x3、x4,则x1x2x3x4的取值范围为()A(30,34)B(30,36)C(32,34)D(32,36)答案C解析设四个实数根满足x1x2x3x4,则易知0t0,()当ya(x1)与yx23x相切时,a1,此时f(x)a|x1|0恰有3个互异的实数根()当直线ya(x1)与函数yx23x相切时,a9,此时f(x)a|x1|0恰有2个互异

9、的实数根结合图象可知0a9.解法二:显然x1,所以a|,令tx1,则a|t5|.因为t(,4)4,),所以t5(,19,)令t5得t1或4,结合图象可得0a9.17(文)函数f(x)对一切实数x都满足f(x)f(x),并且方程f(x)0有三个实根,则这三个实根的和为_答案解析函数图象关于直线x对称,方程f(x)0有三个实根时,一定有一个是,另外两个关于直线x对称,其和为1,故方程f(x)0的三个实根之和为.(理)(2013南开中学月考)已知f(x)axxb的零点x0(n,n1)(nZ),其中常数a,b满足2a3,3b2,则n等于_答案1解析2a3,3b2,alog23,blog32,f(1)a

10、11blog321log3210,f(x)在(1,0)内存在零点,又f(x)为增函数,f(x)在(1,0)内只有一个零点,n1.三、解答题18(文)(2013保定市一模)设函数f(x)x3x2axa,其中a0.(1)求函数f(x)的单调区间;(2)若方程f(x)0在(0,2)内恰有两个实数根,求a的取值范围;(3)当a1时,设函数f(x)在t,t3(t(3,2)上的最大值为H(t),最小值为h(t),记g(t)H(t)h(t),求函数g(t)的最小值解析(1)f (x)x2(a1)xa(xa)(x1),令f (x)0得,x11,x2a0,f(1)0,解得0a,所以a的取值范围是(0,)(3)当

11、a1时,f(x)x3x1,由(1)知f(x)在(3,1)上单调递增,(1,1)上单调递减所以,当t3,2时,t30,1,1t,t3,所以f(x)在t,1上单调递增,1,t3上单调递减,因此,f(x)在t,t3上的最大值H(t)f(1),而最小值h(t)为f(t)与f(t3)中的较小者f(t3)f(t)3(t1)(t2),当t3,2时,f(t)f(t3),故h(t)f(t),所以g(t)f(1)f(t),而f(t)在3,2上单调递增,因此f(t)f(2),所以g(t)在3,2上的最小值为g(2).即函数g(x)在区间3,2上的最小值为.(理)(2013海淀期中)已知函数f(x)lnxax2bx(

12、其中a、b为常数且a0)在x1处取得极值(1)当a1时,求f(x)的单调区间;(2)若f(x)在(0,e上的最大值为1,求a的值解析(1)因为f(x)lnxax2bx,所以f (x)2axb.因为函数f(x)lnxax2bx在x1处取得极值,f (1)12ab0.当a1时,b3,f (x),f (x)、f(x)随x的变化情况如下表:x(0,)(,1)1(1,)f (x)00f(x)极大值极小值所以f(x)的单调递增区间为(0,)和(1,),单调递减区间为(,1)(2)因为f (x),令f (x)0得,x11,x2,因为f(x)在x1处取得极值,所以x2x11,当0时,x20,当1时,f(x)在(0,)上单调递增,(,1)上单调递减,(1,e)上单调递增,所以最大值1可能在x或xe处取得,而f()lna()2(2a1)ln10,所以f(e)lneae2(2a1)e1,解得a;当1e时,f(x)在区间(0,1)上单调递增,(1,)上单调递减,(,e)上单调递增,所以最大值1可能在x1或xe处取得,而f(1)ln1a(2a1)0,所以f(e)lneae2(2a1)e1,解得a,与1x2e矛盾;当x2e时,f(x)在区间(0,1)上单调递增,在(1,e)上单调递减,所以最大值1可能在x1处取得,而f(1)ln1a(2a1)0,矛盾综上所述,a或a2.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3