1、高考资源网( ),您身边的高考专家课堂过关第一章集合与常用逻辑用语第1课时集合的概念(对应学生用书(文)、(理)12页)考情分析考点新知了解集合的含义;体会元素与集合的“属于”关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的数学对象或数学问题;了解集合之间包含与相等的含义;能识别给定集合的子集;了解全集与空集的含义 学会区分集合与元素,集合与集合之间的关系. 学会自然语言、图形语言、集合语言之间的互化. 集合含义中掌握集合的三要素. 不要求证明集合相等关系和包含关系.1. (必修1P10第5题改编)已知集合Am2,2m2m,若3A,则m_答案:解析:因为3A,所以m23或2m
2、2m3.当m23,即m1时,2m2m3,此时集合A中有重复元素3,所以m1不合题意,舍去;当2m2m3时,解得m或m1(舍去),此时当m时,m23满足题意所以m.2. (必修1P7第4题改编)已知集合a|0a4,aN,用列举法可以表示为_答案:解析:因为aN,且0a4,由此可知实数a的取值为0,1,2,3.3. (必修1P17第6题改编)已知集合A1,4),B(,a),AB,则a_答案:4,)解析:在数轴上画出A、B集合,根据图象可知4. (原创)设集合Ax|x54aa2,aR,By|y4b24b2,bR,则A、B的关系是_答案:AB解析:化简得Ax|x1,By|y1,所以AB.5. (必修1
3、P17第8题改编)满足条件1M1,2,3的集合M的个数是_答案:4个解析:满足条件1M1,2,3的集合M有1,1,2,1,3,1,2,3,共4个1. 集合的含义及其表示(1) 集合的定义:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合其中集合中的每一个对象称为该集合的元素(2) 集合中元素的特征:确定性、互异性、无序性(3) 集合的常用表示方法:列举法、描述法、Venn图法(4) 集合的分类:若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类可分为点集、数集等应当特别注意空集是一个特殊而又重要的集合,解题时切勿忽视空集的情形(5) 常用数集及其记法:自然数集记作N;
4、正整数集记作N或N;整数集记作Z;有理数集记作Q;实数集记作R;复数集记作C2. 两类关系(1) 元素与集合之间的关系包括属于与不属于关系,反映了个体与整体之间的从属关系(2) 集合与集合之间的关系 包含关系:如果集合A中的每一个元素都是集合B的元素,那么集合A称为集合B的子集,记为AB或BA,读作“集合A包含于集合B”或“集合B包含集合A” 真包含关系:如果AB,并且AB,那么集合A称为集合B的真子集,读作“集合A真包含于集合B”或“集合B真包含集合A” 相等关系:如果两个集合所含的元素完全相同,即A中的元素都是B中的元素且B中的元素都是A中的元素,则称这两个集合相等(3) 含有n个元素的集
5、合的子集共有2n个,真子集共有2n1个,非空子集共有2n1个,非空真子集有2n2个.题型1正确理解和运用集合概念例1已知集合Ax|ax23x20,aR(1) 若A是空集,求a的取值范围;(2) 若A中只有一个元素,求a的值,并将这个元素写出来;(3) 若A中至多有一个元素,求a的取值范围解: (1) 若A是空集,则98a0,解得a.(2) 若A中只有一个元素,则98a0或a0,解得a或a0;当a时这个元素是;当a0时,这个元素是.(3) 由(1)(2)知,当A中至多有一个元素时,a的取值范围是a或a0.已知a1时,集合a,2a中有且只有3个整数,则a的取值范围是_答案:1a0解析:因为a1,所
6、以2a1,所以1必在集合中若区间端点均为整数,则a0,集合中有0,1,2三个整数,所以a0适合题意;若区间端点不为整数,则区间长度222a4,解得1a0,此时,集合中有0,1,2三个整数,1a0适合题意综上,a的取值范围是10若AB,求实数a的取值范围解:由题意有A8,4,Bx|(xa)(xa3)0 当a时,B,所以AB恒成立; 当a时,Bx|xa3因为AB,所以a4或a34或a5(舍去),所以4a时,Bx|xa因为AB,所以a34或a8(舍去),解得a1.综上,当AB时,实数a的取值范围是(4,1)1. 设集合Ax|x2,Bx|xa,且满足A真包含于B,则实数a的取值范围是_答案:(2,)解
7、析:利用数轴可得实数a的取值范围是(2,)2. 已知集合A1,2,3,4,5,B(x,y)|xA,yA,xyA,则B中元素的个数为_答案:10解析:B中所含元素有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4)3. 若xA,则A,就称A是“伙伴关系集合”,集合M的所有非空子集中具有伙伴关系的集合的个数是_答案:3解析:具有伙伴关系的元素组是1;,2,所以具有伙伴关系的集合有3个:1,.4. 已知全集UR,集合Mx|2x12和Nx|x2k1,k1,2,的韦恩(Venn)图如图所示,则阴影部分所示的集合的元素共有_个答案:2解析
8、:由题图示可以看出阴影部分表示集合M和N的交集,所以由Mx|1x3,得MN1,3,有2个5. 设P、Q为两个非空实数集合,定义集合PQab|aP,bQ,若P0,2,5,Q1,2,6,则PQ中元素的个数为_答案:8解析:(1) PQab|aP,bQ,P0,2,5,Q1,2,6, 当a0时,ab的值为1,2,6;当a2时,ab的值为3,4,8;当a5时,ab的值为6,7,11, PQ1,2,3,4,6,7,8,11, PQ中有8个元素1. 已知Ax|x22x30,若实数aA,则a的取值范围是_答案:1,3解析:由条件,a22a30,从而a1,32. 现有含三个元素的集合,既可以表示为,也可表示为a
9、2,ab,0,则a2 013b2 013_答案:1解析:由已知得0及a0,所以b0,于是a21,即a1或a1,又根据集合中元素的互异性可知a1应舍去,因此a1,故a2 013b2 013(1)2 0131.3. 已知集合Ax|(x2)x(3a1)0,B.(1) 当a2时,求AB;(2) 求使B真包含于A的实数a的取值范围解:(1) ABx|2x5(2) Bx|axa21若a时,A,不存在a使BA;若a时,2a3;若a时,1a.故a的取值范围是2,34. 已知Aa2,(a1)2,a23a3且1A,求实数a的值解:由题意知:a21或(a1)21或a23a31, a1或2或0,根据元素的互异性排除1
10、,2, a0即为所求1. 研究一个集合,首先要看集合中的代表元素,然后再看元素的限制条件,当集合用描述法表示时,注意弄清其元素表示的意义是什么注意区分x|yf(x)、y|yf(x)、(x,y)|yf(x)三者的不同对于含有字母的集合,在求出字母的值后,要注意检验集合的元素是否满足互异性2. 空集是不含任何元素的集合,空集是任何集合的子集在解题时,若未明确说明集合非空时,要考虑到集合为空集的可能性例如:AB,则需考虑A和A两种可能的情况3. 判断两集合的关系常有两种方法:一是化简集合,从表达式中寻找两集合间的关系;二是用列举法表示各集合,从元素中寻找关系4. 已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素间的关系,进而转化为参数满足的关系解决这类问题常常需要合理利用数轴、Venn图帮助分析备课札记欢迎广大教师踊跃来稿,稿酬丰厚。