ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:144.50KB ,
资源ID:111001      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-111001-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《与名师对话》2015高考数学(文北师大版)课时作业:48 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《与名师对话》2015高考数学(文北师大版)课时作业:48 WORD版含解析.doc

1、课时作业(四十八)一、选择题1(2012年广州二模)已知双曲线x2my21的虚轴长是实轴长的2倍,则实数m的值是()A4 B. C D4解析:把双曲线的方程化为x21,可见,双曲线的实轴长为2,虚轴长为2 .据题意有:2 22,m.答案:C2(2012年洛阳二模)已知ABC为等腰直角三角形,ABC90,则以A、B为焦点且过点C的双曲线的离心率为()A.1 B. C2 D.1解析:据题意,|CA|AB|,|CB|AB|,且双曲线的实轴长为|CA|CB|(1)|AB|,双曲线的离心率为e1.答案:D3(2012年郑州二模)设F1,F2是双曲线x21的两个焦点,P是双曲线上的一点,且3|PF1|4|

2、PF2|,则PF1F2的面积等于()A4 B8 C24 D48解析:双曲线的实轴长为2,焦距为|F1F2|2510.据题意和双曲线的定义知:2|PF1|PF2|PF2|PF2|PF1|,|PF1|6,|PF2|8.|PF2|2|PF2|2|F1F2|2,PF1PF2,SPF1F2|PF1|PF2|6824.答案:C4(2012年新课标全国)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y216x的准线交于A,B两点,|AB|4,则C的实轴长为()A. B2 C4 D8解析:设等轴双曲线C的方程为x2y2a2(a0)抛物线y216x的准线方程为x4,它与C的交点坐标为(4,)据题意,24,a

3、2,C的实轴长为2a4.答案:C5(2011年山东)已知双曲线1(a0,b0)的两条渐近线均和圆C:x2y26x50相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为()A.1 B.1C.1 D.1解析:圆C:x2y26x50的圆心坐标为(3,0),由题意知双曲线的半焦距长c3,即a2b29,又双曲线的渐近线方程为bxay0,圆的半径为2,由题意得2,即9b24(a2b2),联立得:a25,b24,即双曲线的方程为1.答案:A6(2012年福州质检)过双曲线1(a0,b0)的左焦点F1引圆x2y2a2的切线,切点为T,延长F1T交双曲线右支于点P,若T为线段F1P的中点,则该双曲线的渐近线

4、方程为()Axy0 B2xy0 C4xy0 Dx2y0解析:如图所示,设双曲线的右焦点为F2,c.T为F1P的中点,O为F1F2的中点,OTPF2,|PF2|2|OT|,PF1PF2,|PF2|2a,据双曲线的定义知:|PF1|PF2|2a,|PF1|4a.|PF1|2|PF2|2|F1F2|2,c25a2,b2a,2.双曲线的渐近线方程为y2x,即2xy0.答案:B二、填空题7(2012年合肥模拟)已知以双曲线C的两个焦点及虚轴的两个端点为顶点的四边形中,有一个内角为60,则双曲线C的离心率为_解析:如图,B1F1B260,则cb,即c23b2,由c23(c2a2),得,则e.答案:8(20

5、12年杭州质检)双曲线x21的右焦点到双曲线一条渐近线的距离为2,则双曲线的离心率为_解析:双曲线x21的右焦点F(c,0)到渐近线bxy0的距离:2,又a1,b21c2,解得b24,c25.双曲线的离心率e.答案:9如图,点P是双曲线1上除顶点外的任意一点,F1、F2分别为左、右焦点,c为半焦距,PF1F2的内切圆与F1F2切于点M,则|F1M|F2M|_.解析:根据从圆外一点向圆所引的两条切线长相等得:|F1M|F2M|PF1|PF2|2a,又|F1M|F2M|2c,解得|F1M|ac,|F2M|ca,从而|F1M|F2M|c2a2b2.答案:b2三、解答题10求适合下列条件的双曲线方程:

6、(1)焦点在y轴上,且过点(3,4)、;(2)已知双曲线的渐近线方程为2x3y0,且双曲线经过点P(,2)解:(1)设所求双曲线方程为1(a0,b0),则因为点(3,4),在双曲线上,所以点的坐标满足方程,由此得令m,n,则方程组化为解方程组得a216,b29,所求双曲线方程为1.(2)由双曲线的渐近线方程yx,可设双曲线方程为(0)双曲线过点P(,2),故所求双曲线方程为y2x21.11如图,已知F1、F2为双曲线1(a0,b0)的焦点,过F2作垂直于x轴的直线交双曲线于点P,且PF1F230.求:(1)双曲线的离心率;(2)双曲线的渐近线方程解:(1)PF2F190,PF1F230.在Rt

7、PF2F1中,|PF1|,|PF2|PF1|,又|PF1|PF2|2a,即c2a,e.(2)对于双曲线,有c2a2b2,b.双曲线的渐近线方程为yx.12(2012年江南十校)已知双曲线的中心在原点,坐标轴为对称轴,一条渐近线方程为yx,右焦点为F(5,0),双曲线的实轴为A1A2,P为双曲线上一点(不同于A1、A2),直线A1P、A2P分别与直线l:x交于M、N两点(1)求双曲线的方程;(2)求证:为定值解:(1)依题意可设双曲线方程为:1(a0,b0),则所求双曲线方程为1.(2)证明:A1(3,0)、A2(3,0)、F(5,0),设P(x,y),M,(x3,y),A1、P、M三点共线,(

8、x3)y0y0,y0,即M,同理得N,1,0,故为定值热点预测13已知F1,F2是双曲线1(a0,b0)的两焦点,以线段F1F2为边作正三角形MF1F2,若边MF1的中点P在双曲线上,则双曲线的离心率是()A42 B.1 C. D.1解析:(数形结合法)因为MF1的中点P在双曲线上,|PF2|PF1|2a,MF1F2为正三角形,边长都是2c,所以cc2a,所以e1,故选D.答案:D14已知P是双曲线1(a0,b0)上的点,F1,F2是其焦点,双曲线的离心率是,且0,若PF1F2的面积为9,则ab的值为_解析:设c,则,ac,bc.0(即PF1PF2),SPF1F29,|PF1|PF2|18.两

9、式相减得:2|PF1|PF2|4b2,b29,b3,c5,a4,ab7.答案:715已知椭圆C1的方程为y21,双曲线C2的左、右焦点分别是C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点(1)求双曲线C2的方程;(2)若直线l:ykx与双曲线C2恒有两个不同的交点A和B,且2(其中O为原点),求k的取值范围解:(1)设双曲线C2的方程为1,则a2413,c24,再由a2b2c2,得b21,故C2的方程为y21.(2)将ykx代入y21,得(13k2)x26kx90.由直线l与双曲线C2交于不同的两点,得k2且k22,得x1x2y1y22,2,即0,解得k23,由得k21,故k的取值范围为.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3