1、训练目标(1)会求相互独立事件发生的概率;(2)会求简单的条件概率.训练题型(1)求相互独立事件的概率;(2)求条件概率.解题策略(1)正确判断事件的独立性,理解并能灵活应用相互独立事件的概率性质;(2)准确理解P(B|A)、P(AB)的含义是解决条件概率问题的关键.一、选择题1口袋内装有100个大小相同的红球、白球和黑球,其中红球有45个,从口袋中摸出一个球,摸出白球的概率是0.23,则摸出黑球的概率是()A0.31 B0.32 C0.33 D0.362一个箱子中有9张标有1,2,3,4,5,6,7,8,9的卡片,若从中依次取两张,则在第一张是奇数的条件下第二张也是奇数的概率是()A. B.
2、 C. D.3从1,2,3,9这9个数中任取两数,其中:恰有一个是偶数和恰有一个是奇数;至少有一个是奇数和两个都是奇数;至少有一个是奇数和两个都是偶数;至少有一个是奇数和至少有一个是偶数上述事件中,是对立事件的是()A B C D4一个盒子里有6支好晶体管,4支坏晶体管,任取两次,每次取一支,每次取后不放回,已知第一支是好晶体管,则第二支也是好晶体管的概率为()A. B. C. D.5投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是()A. B. C. D.6(2015河北正定中学月考)袋中装有完全相同的5个
3、小球,其中有红色小球3个,黄色小球2个,如果不放回地依次摸出2个小球,那么在第一次摸出红色小球的条件下,第二次摸出红色小球的概率是()A. B. C. D.7(2015辽宁大连瓦房店高级中学期末)一个坛子里有编号为1,2,12的12个大小相同的球,其中1到6号球是红球,其余的是黑球,若从中任取两个球,在取到的球都是红球的前提下,则至少有1个球的号码是偶数的概率是()A. B. C. D.8甲袋中装有3个白球5个黑球,乙袋中装有4个白球6个黑球,现从甲袋中随机取出一个球放入乙袋中,充分混合后再从乙袋中随机取出一个球放回甲袋,则甲袋中白球没有减少的概率为()A. B. C . D.二、填空题9(2
4、015课标全国改编)投篮测试中,每人投3次,至少投中2次才能通过测试已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为_10甲、乙两人向目标各射击一次(甲、乙相互没有影响)甲的命中率为,乙的命中率为,已知目标被击中,则目标被甲击中的概率为_11(2015上海十二校联考)小李同学在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,则他在上学路上到第三个路口时首次遇到红灯的概率为_(用最简分数表示)12(2015上海闵行质量调研)计算机毕业考试分为理论与操作两部分,每部分考试成绩只分“合格”与“不合格”,只有当两部分考试都“合格”时,才颁发计算机“合格证书”甲、乙两人在理论考试中“合格”的概率依次为,在操作考试中“合格”的概率依次为,所有考试是否合格,相互之间没有影响,则甲、乙进行理论与操作两项考试后,恰有1人获得“合格证书”的概率为_答案解析1B2.D3.C4.C5.C6.C7.B8.A9.0.64810.11.12.