ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:661KB ,
资源ID:1108955      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1108955-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(陕西省吴堡县吴堡中学高中数学 第二章 正、余弦定理在实际生活中的应用典型例题素材 北师大版必修5.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

陕西省吴堡县吴堡中学高中数学 第二章 正、余弦定理在实际生活中的应用典型例题素材 北师大版必修5.doc

1、高考资源网() 您身边的高考专家正、余弦定理在实际生活中的应用正、余弦定理在测量、航海、物理、几何、天体运行等方面的应用十分广泛,解这类应用题需要我们吃透题意,对专业名词、术语要能正确理解,能将实际问题归结为数学问题.求解此类问题的大概步骤为:(1)准确理解题意,分清已知与所求,准确理解应用题中的有关名称、术语,如仰角、俯角、视角、象限角、方位角等;(2)根据题意画出图形;(3)将要求解的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识建立数学模型,然后正确求解,演算过程要简练,计算要准确,最后作答.1.测量中正、余弦定理的应用例1某观测站在目标南偏西方向,从出发有一条南

2、偏东走向的公路,在处测得公路上与相距31千米的处有一人正沿此公路向走去,走20千米到达,此时测得距离为千米,求此人所在处距还有多少千米?分析:根据已知作出示意图,分析已知及所求,解,求角.再解,求出,再求出,从而求出(即为所求).东北解:由图知,.,.在中,.由余弦定理,得.即.整理,得,解得或(舍).故(千米).答:此人所在处距还有15千米.评注:正、余弦定理的应用中,示意图起着关键的作用,“形”可为“数”指引方向,因此,只有正确作出示意图,方能合理应用正、余弦定理. 2.航海中正、余弦定理的应用例2在海岸处,发现北偏东方向,距为海里的处有一艘走私船,在处北偏西方向,距为2海里的处的缉私船奉

3、命以海里/小时的速度追截走私船.此时走私船正以海里/小时的速度从处向北偏东方向逃窜,问缉私船沿什么方向能最快追上走私船,并求出所需要的时间?分析:注意到最快追上走私船,且两船所用时间相等,可画出示意图,需求的方位角及由到所需的航行时间.解:设缉私船追上走私船所需时间为小时,则有,.在中,根据余弦定理可得.根据正弦定理可得.,易知方向与正北方向垂直,从而.在中,根据正弦定理可得:,则有,小时分钟.所以缉私船沿北偏东方向,需分钟才能追上走私船.评注:认真分析问题的构成,三角形中边角关系的分析,可为解题的方向提供依据.明确方位角是应用的前提,此题边角关系较复杂要注意正余弦定理的联用.3.航测中正、余

4、弦定理的应用例3飞机的航线和山顶在同一个铅直平面内,已知飞机的高度为海拔m,速度为km/h,飞行员先看到山顶的俯角为,经过秒后又看到山顶的俯角为,求山顶的海拔高度(精确到m).分析:首先根据题意画出图形,如图,这样可在和中解出山顶到航线的距离,然后再根据航线的海拔高度求得山顶的海拔高度.解:设飞行员的两次观测点依次为和,山顶为,山顶到直线的距离为.如图,在中,由已知,得,.又(km),根据正弦定理,可得,进而求得,(m),可得山顶的海拔高度为(m).评注:解题中要认真分析与问题有关的三角形,正确运用正、余弦定理有序地解相关的三角形,从而得到问题的答案.4.炮兵观测中正、余弦定理的应用例4我炮兵

5、阵地位于地面处,两观察所分别位于地面点和处,已知米,目标出现于地面点处时,测得,(如图),求炮兵阵地到目标的距离(结果保留根号).分析:根据题意画出图形,如图,题中的四点、可构成四个三角形.要求的长,由于,只需知道和的长,这样可选择在和中应用定理求解.解:在中,根据正弦定理有,同理,在中,根据正弦定理有.又在中,根据勾股定理有:.所以炮兵阵地到目标的距离为米.评注:应用正、余弦定理求解问题时,要将实际问题转化为数学问题,而此类问题又可归结为解斜三角形问题,因此,解题的关键是正确寻求边、角关系,方能正确求解. 5.下料中正余弦定理的应用例5已知扇形铁板的半径为,圆心角为,要从中截取一个面积最大的

6、矩形,应怎样划线?分析:要使截取矩形面积最大,必须使矩形的四个顶点都在扇形的边界上,即为扇形的内接矩形,如图所示.(1)(2)解:在图(1)中,在上取一点,过作于,过作交于,再过作于.设,.在中,由正弦定理,得.于是.当即时,取得最大值.在图(2)中,取中点,连结,在上取一点,过作交于,过作交于,过作交于,连结得矩形,设,则.在中,由正弦定理得:,.(当时取“”).当时,取得最大值.,作,按图(1)划线所截得的矩形面积最大.评注:此题属于探索性问题,需要我们自己寻求参数,建立目标函数,这需要有扎实的基本功,在平时学习中要有意识训练这方面的能力.综上,通过对以上例题的分析,要能正确解答实际问题需:(1)准确理解有关问题的陈述材料和应用的背景;(2)能够综合地,灵活地应用所学知识去分析和解决带有实际意义的与生产、生活、科学实验相结合的数学问题.- 5 - 版权所有高考资源网

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3