ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:424KB ,
资源ID:1106395      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1106395-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2015高考数学(浙江专用理科)二轮专题4 第3讲(含最新原创题及解析) WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2015高考数学(浙江专用理科)二轮专题4 第3讲(含最新原创题及解析) WORD版含解析.doc

1、第3讲立体几何中的向量方法(建议用时:60分钟)一、选择题1已知平面ABC,点M是空间任意一点,点M满足条件,则直线AM()A与平面ABC平行B是平面ABC的斜线C是平面ABC的垂线D在平面ABC内解析由已知得M,A,B,C四点共面,所以AM在平面ABC内,选D.答案D2如图,四棱锥SABCD的底面为正方形,SD底面ABCD,则下列结论中不正确的是()AACSBBAB平面SCDCSA与平面SBD所成的角等于SC与平面SBD所成的角DAB与SC所成的角等于DC与SA所成的角解析选项A正确,因为SD垂直于底面ABCD,而AC平面ABCD,所以ACSD;再由四边形ABCD为正方形,所以ACBD;而B

2、D与SD相交,所以,AC平面SBD,ACSB.选项B正确,因为ABCD,而CD平面SCD,AB平面SCD,所以AB平面SCD.选项C正确,设AC与BD的交点为O,易知SA与平面SBD所成的角就是ASO,SC与平面SBD所成的角就是CSO,易知这两个角相等选项D错误,AB与SC所成的角等于SCD,而DC与SA所成的角是SAB,这两个角不相等答案D3如图,正方体ABCDA1B1C1D1的棱长为a,M,N分别为A1B和AC上的点,A1MAN,则MN与平面BB1C1C的位置关系是()A相交B平行C垂直D不能确定解析()(),又是平面BB1C1C的一个法向量,且()0,又MN面BB1C1C,MN平面BB

3、1C1C.答案B4(2014新课标全国卷)直三棱柱ABCA1B1C1中,BCA90,M,N分别是A1B1,A1C1的中点,BCCACC1,则BM与AN所成角的余弦值为()A.BCD解析法一由于BCA90,三棱柱为直三棱柱,且BCCACC1,可将三棱柱补成正方体建立如图(1)所示空间直角坐标系设正方体棱长为2,则可得A(0,0,0),B(2,2,0),M(1,1,2),N(0,1,2),(1,1,2)(2,2,0)(1,1,2),(0,1,2)cos,.法二如图(2),取BC的中点D,连接MN,ND,AD,由于MN綉B1C1綉BD,因此有ND綉BM,则ND与NA所成角即为异面直线BM与AN所成角

4、设BC2,则BMND,AN,AD,因此cosAND.答案C5已知正三棱柱ABCA1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦等于()A.BCD解析如图所示建立空间直角坐标系,设正三棱柱的棱长为2,O(0,0,0),B(,0,0),A(0,1,0),B1(,0,2),则(,1,2),则(,0,0)为侧面ACC1A1的法向量,由sin .答案A6(2014北京东城区模拟)如图,点P是单位正方体ABCDA1B1C1D1中异于A的一个顶点,则的值为()A0B1C0或1D任意实数解析可为下列7个向量:,.其中一个与重合,|21;,与垂直,这时0;,与的夹角为45,这时1cos

5、1,最后1cosBAC11,故选C.答案C7如图所示,正方体ABCDA1B1C1D1的棱长为1,线段B1D1上有两个动点E,F且EF,则下列结论中错误的是()AACBEBEF平面ABCDC三棱锥ABEF的体积为定值D异面直线AE,BF所成的角为定值解析AC平面BB1D1D,又BE平面BB1D1D.ACBE,故A正确B1D1平面ABCD,又E,F在直线D1B1上运动,EF平面ABCD,故B正确C中,由于点B到直线B1D1的距离不变,故BEF的面积为定值,又点A到平面BEF的距离为,故VABEF为定值故C正确建立空间直角坐标系,如图所示,可得A(1,1,0),B(0,1,0),当点E在D1处,点F

6、为D1B1的中点时,E(1,0,1),F,1,(0,1,1),1,.又|,|,cos,.此时异面直线AE与BF成30角当点E为D1B1的中点,F在B1处,此时E,1,F(0,1,1),1,(0,0,1),1,| ,cos,故选D.答案D二、填空题8在一直角坐标系中,已知A(1,6),B(3,8),现沿x轴将坐标平面折成60的二面角,则折叠后A,B两点间的距离为_解析如图为折叠后的图形,其中作ACl于点C,BDl于点D,则AC6,BD8,CD4,两异面直线AC,BD所成的角为60,故由,得|2|268,|2.答案29已知ABCDA1B1C1D1为正方体,()232;()0;向量与向量的夹角是60

7、;正方体ABCDA1B1C1D1的体积为|.其中正确命题的序号是_解析设正方体的棱长为1,中()223()23,故正确;中,由于AB1A1C,故正确;中A1B与AD1两异面直线所成的角为60,但与的夹角为120,故不正确;中|0.故也不正确答案10如图,在直三棱柱ABCA1B1C1中,ACB90,AA12,ACBC1,则异面直线A1B与AC所成角的余弦值是_解析以C为坐标原点,CA,CB,CC1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,A1(1,0,2),B(0,1,0),A(1,0,0),C(0,0,0),则(1,1,2),(1,0,0),cos,.答案11已知正四棱锥PABCD的侧

8、棱与底面所成角为60,M为PA中点,连接DM,则DM与平面PAC所成角的大小是_解析设底面正方形的边长为a,由已知可得正四棱锥的高为a,建立如图所示空间直角坐标系,则平面PAC的法向量为n(1,0,0),D,A0,a,0,P,M,所以cos ,n,所以DM与平面PAC所成角为45.答案4512(2014孝感模拟)如图,在正方体ABCDA1B1C1D1中,点P在直线BC1上运动时,有下列三个命题:三棱锥AD1PC的体积不变;直线AP与平面ACD1所成角的大小不变;二面角PAD1C的大小不变其中真命题的序号是_解析中,BC1平面AD1C,BC1上任意一点到平面AD1C的距离相等,所以体积不变,正确

9、;中,P在直线BC1上运动时,直线AB与平面ACD1所成角和直线AC1与平面ACD1所成角不相等,所以不正确;中,P在直线BC1上运动时,点P在平面AD1C1B中,即二面角PAD1C的大小不受影响,所以正确答案三、解答题13(2014广东卷)如图,四边形ABCD为正方形,PD平面ABCD,DPC30,AFPC于点F,FECD,交PD于点E. (1)证明:CF平面ADF;(2)求二面角DAFE的余弦值(1)证明PD平面ABCD,AD平面ABCD,PDAD.又CDAD,PDCDD,AD平面PCD.又PC平面PCD,ADPC.又AFPC,ADAFA,PC平面ADF,即CF平面ADF.(2)解设AB1

10、,则在RtPDC中,CD1,又DPC30,PC2,PD,PCD60.由(1)知CFDF,DFCDsin 60,CFCDcos 60.又FECD,DE.同理EFCD.如图所示,以D为原点,建立空间直角坐标系,则A(0,0,1),E,F,P(,0,0),C(0,1,0)设m(x,y,z)是平面AEF的一个法向量,则又,令x4,则z,m(4,0,)由(1)知平面ADF的一个法向量为(,1,0),设二面角DAFE的平面角为,可知为锐角,故cos |cosm,|.故二面角DAFE的余弦值为.14(2014合肥第二次质检)在四棱锥PABCD中,底面ABCD是边长为1的正方形,且PA平面ABCD. (1)求

11、证:PCBD;(2)过直线BD且垂直于直线PC的平面交PC于点E,且三棱锥EBCD的体积取到最大值求此时四棱锥EABCD的高;求二面角ADEB的正弦值的大小(1)证明连接AC,因为四边形ABCD是正方形,所以BDAC.因为PA平面ABCD,所以PABD.又ACPAA,所以BD平面PAC.又PC平面PAC,所以PCBD.(2)解设PAx,三棱锥EBCD的底面积为定值,在PBC中,易知PB,PC,又BC1,故PBC直角三角形又BEPC,得EC,可求得该三棱锥的高h.当且仅当x,即x时,三棱锥EBCD的体积取到最大值,所以h.此时四棱锥EABCD的高为.以点A为原点,AB,AD,AP所在直线为坐标轴

12、建立空间直角坐标系,则A(0,0,0),C(1,1,0),D(0,1,0),P(0,0,),易求得CECP.所以,(0,1,0)设平面ADE的法向量n1(x,y,z),则即令x,则n1(,0,3),同理可得平面BDE的法向量n2(1,1,),所以cosn1,n2.所以sinn1,n2.所以二面角ADEB的正弦值的大小为.15(2013天津卷)如图,四棱柱ABCDA1B1C1D1中,侧棱A1A底面ABCD,ABDC,ABAD,ADCD1,AA1AB2,E为棱AA1的中点 (1)证明B1C1CE;(2)求二面角B1CEC1的正弦值;(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正

13、弦值为,求线段AM的长解 (向量法)如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),B(0,0,2),C(1,0,1),B1(0,2,2),C1(1,2,1),E(0,1,0) (1)证明易得(1,0,1),(1,1,1),于是0,所以B1C1CE.(2)(1,2,1)设平面B1CE的法向量m(x,y,z),则即消去x,得y2z0,不妨令z1,可得一个法向量为m(3,2,1)由(1),B1C1CE,又CC1B1C1,可得B1C1平面CEC1,故(1,0,1)为平面CEC1的一个法向量于是cosm,从而sinm,所以二面角B1CEC1的正弦值为.(3)(0,1,0),(1,1,1

14、),设(,),01,有(,1,)可取(0,0,2)为平面ADD1A1的一个法向量设为直线AM与平面ADD1A1所成的角,则sin |cos,|,于是,解得,所以AM.(综合法)(1)证明因为侧棱CC1底面A1B1C1D1,B1C1平面A1B1C1D1,所以CC1B1C1.经计算可得B1E,B1C1,EC1,从而B1E2B1CEC,所以在B1EC1中,B1C1C1E,又CC1,C1E平面CC1E,CC1C1EC1,所以B1C1平面CC1E,又CE平面CC1E,故B1C1CE.(2)解过B1作B1GCE于点G,连接C1G.由(1),B1C1CE,故CE平面B1C1G,得CEC1G,所以B1GC1为二面角B1CEC1的平面角在CC1E中,由CEC1E,CC12,可得C1G.在RtB1C1G中,B1G,所以sin B1GC1,即二面角B1CEC1的正弦值为.(3)解连接D1E,过点M作MHED1于点H,可得MH平面ADD1A1,连接AH,AM,则MAH为直线AM与平面ADD1A1所成的角设AMx,从而在RtAHM中,有MHx,AHx.在RtC1D1E中,C1D11,ED1,得EHMHx.在AEH中,AEH135,AE1,由AH2AE2EH22AEEHcos 135,得x21x2x,整理得5x22x60,解得x.所以线段AM的长为.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3