ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:80.50KB ,
资源ID:1101176      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1101176-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2015高考数学(文)一轮演练知能检测:第9章 第6节数学归纳法.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2015高考数学(文)一轮演练知能检测:第9章 第6节数学归纳法.doc

1、第六节数学归纳法全盘巩固1用数学归纳法证明不等式1(nN*)成立,其初始值至少应取()A7 B8 C9 D10解析:选B左边12,代入验证可知n的最小值是8.2用数学归纳法证明“1aa2an1(a1)”,在验证n1时,左端计算所得的项为()A1 B1a C1aa2 D1aa2a3解析:选C等式的左端为1aa2an1,当n1时,左端1aa2.3利用数学归纳法证明不等式1的过程中,由nk推导nk1时,不等式的左边增加的式子是_解析:不等式的左边增加的式子是,故填.答案:8已知数列an满足a11,an1an1(nN*),通过计算a1,a2,a3,a4,可猜想an_.解析:a11,a2a11,a3a2

2、1,a4a31.猜想an.答案:9设平面内有n条直线(n3),其中有且仅有两条直线互相平行,任意三条直线不过同一点若用f(n)表示这n条直线交点的个数,则f(4)_;当n4时,f(n)_(用n表示)解析:f(3)2,f(4)f(3)3235,f(n)f(3)34(n1)234(n1)(n1)(n2)答案:5(n1)(n2)10用数学归纳法证明下面的等式:12223242(1)n1n2(1)n1.证明:(1)当n1时,左边121,右边(1)01,原等式成立(2)假设nk(kN*,k1)时,等式成立,即有12223242(1)k1k2(1)k1.那么,当nk1时,则有12223242(1)k1k2

3、(1)k(k1)2(1)k1(1)k(k1)2(1)kk2(k1)(1)k.nk1时,等式也成立,由(1)(2)知对任意nN*,有12223242(1)n1n2(1)n1.11设数列an满足a13,an1a2nan2,n1,2,3,.(1)求a2,a3,a4的值,并猜想数列an的通项公式(不需证明);(2)记Sn为数列an的前n项和,试求使得Sn2n成立的最小正整数n,并给出证明解:(1)a25,a37,a49,猜想an2n1.(2)Snn22n,使得Snn22n.n6时,266226,即6448成立;假设nk(k6,kN*)时,2kk22k成立,那么2k122k2(k22k)k22kk22k

4、k22k32k(k1)22(k1),即nk1时,不等式成立;由可得,对于任意的n6(nN*)都有2nn22n成立12(2014舟山模拟)若不等式对一切正整数n都成立,求正整数a的最大值,并证明结论解:当n1时,即,所以a.(1)当n1时,已证得不等式成立(2)假设当nk(kN*)时,不等式成立,即.则当nk1时,有.因为0,所以当nk1时不等式也成立由(1)(2)知,对一切正整数n,都有,所以a的最大值等于25.冲击名校已知数列an满足a10,a21,当nN*时,an2an1an.求证:数列an的第4m1项(mN*)能被3整除证明:(1)当m1时,a4m1a5a4a3(a3a2)(a2a1)(a2a1)2a2a13a22a1303.即当m1时,第4m1项能被3整除故命题成立(2)假设当mk时,a4k1能被3整除,则当mk1时,a4(k1)1a4k5a4k4a4k32a4k3a4k22(a4k2a4k1)a4k23a4k22a4k1.显然,3a4k2能被3整除,又由假设知a4k1能被3整除所以3a4k22a4k1能被3整除即当mk1时,a4(k1)1也能被3整除命题也成立由(1)和(2)知,对于任意nN*,数列an中的第4m1项能被3整除

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3